3 The cubic equation
$$2 z ^ { 3 } + p z ^ { 2 } + q z + 16 = 0$$
where \(p\) and \(q\) are real, has roots \(\alpha , \beta\) and \(\gamma\).
It is given that \(\alpha = 2 + 2 \sqrt { 3 } \mathrm { i }\).
- Write down another root, \(\beta\), of the equation.
- Find the third root, \(\gamma\).
- Find the values of \(p\) and \(q\).
- Express \(\alpha\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
- Show that
$$( 2 + 2 \sqrt { 3 } \mathrm { i } ) ^ { n } = 4 ^ { n } \left( \cos \frac { n \pi } { 3 } + \mathrm { i } \sin \frac { n \pi } { 3 } \right)$$
- Show that
$$\alpha ^ { n } + \beta ^ { n } + \gamma ^ { n } = 2 ^ { 2 n + 1 } \cos \frac { n \pi } { 3 } + \left( - \frac { 1 } { 2 } \right) ^ { n }$$
where \(n\) is an integer.