A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Integration using inverse trig and hyperbolic functions
Q6
AQA FP2 2010 January — Question 6
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2010
Session
January
Topic
Integration using inverse trig and hyperbolic functions
6
Show that the substitution \(t = \tan \theta\) transforms the integral $$\int \frac { \mathrm { d } \theta } { 9 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta }$$ into $$\int \frac { \mathrm { d } t } { 9 + t ^ { 2 } }$$
Hence show that $$\int _ { 0 } ^ { \frac { \pi } { 3 } } \frac { d \theta } { 9 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta } = \frac { \pi } { 18 }$$
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8