AQA FP2 2010 January — Question 4

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2010
SessionJanuary
TopicHyperbolic functions

4 A curve \(C\) is given parametrically by the equations $$x = \frac { 1 } { 2 } \cosh 2 t , \quad y = 2 \sinh t$$
  1. Express $$\left( \frac { \mathrm { d } x } { \mathrm {~d} t } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 }$$ in terms of \(\cosh t\).
  2. The arc of \(C\) from \(t = 0\) to \(t = 1\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
    1. Show that \(S\), the area of the curved surface generated, is given by $$S = 8 \pi \int _ { 0 } ^ { 1 } \sinh t \cosh ^ { 2 } t \mathrm {~d} t$$
    2. Find the exact value of \(S\).