AQA FP2 2010 January — Question 5

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2010
SessionJanuary
TopicSequences and series, recurrence and convergence

5 The sum to \(r\) terms, \(S _ { r }\), of a series is given by $$S _ { r } = r ^ { 2 } ( r + 1 ) ( r + 2 )$$ Given that \(u _ { r }\) is the \(r\) th term of the series whose sum is \(S _ { r }\), show that:
    1. \(u _ { 1 } = 6\);
    2. \(u _ { 2 } = 42\);
    3. \(\quad u _ { n } = n ( n + 1 ) ( 4 n - 1 )\).
  1. Show that $$\sum _ { r = n + 1 } ^ { 2 n } u _ { r } = 3 n ^ { 2 } ( n + 1 ) ( 5 n + 2 )$$