AQA FP2 2010 January — Question 7

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2010
SessionJanuary
TopicProof by induction

7 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 2 , \quad u _ { k + 1 } = 2 u _ { k } + 1$$
  1. Prove by induction that, for all \(n \geqslant 1\), $$u _ { n } = 3 \times 2 ^ { n - 1 } - 1$$
  2. Show that $$\sum _ { r = 1 } ^ { n } u _ { r } = u _ { n + 1 } - ( n + 2 )$$