AQA FP2 (Further Pure Mathematics 2) 2010 January

Question 1
View details
1
  1. Use the definitions \(\cosh x = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\) and \(\sinh x = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } \right)\) to show that $$\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1$$
    1. Express $$5 \cosh ^ { 2 } x + 3 \sinh ^ { 2 } x$$ in terms of \(\cosh x\).
    2. Sketch the curve \(y = \cosh x\).
    3. Hence solve the equation $$5 \cosh ^ { 2 } x + 3 \sinh ^ { 2 } x = 9.5$$ giving your answers in logarithmic form.
Question 2
View details
2
  1. On the same Argand diagram, draw:
    1. the locus of points satisfying \(| z - 4 + 2 \mathrm { i } | = 4\);
    2. the locus of points satisfying \(| z | = | z - 2 \mathrm { i } |\).
  2. Indicate on your sketch the set of points satisfying both $$| z - 4 + 2 i | \leqslant 4$$ and $$| z | \geqslant | z - 2 \mathrm { i } |$$
Question 3
View details
3 The cubic equation $$2 z ^ { 3 } + p z ^ { 2 } + q z + 16 = 0$$ where \(p\) and \(q\) are real, has roots \(\alpha , \beta\) and \(\gamma\).
It is given that \(\alpha = 2 + 2 \sqrt { 3 } \mathrm { i }\).
    1. Write down another root, \(\beta\), of the equation.
    2. Find the third root, \(\gamma\).
    3. Find the values of \(p\) and \(q\).
    1. Express \(\alpha\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
    2. Show that $$( 2 + 2 \sqrt { 3 } \mathrm { i } ) ^ { n } = 4 ^ { n } \left( \cos \frac { n \pi } { 3 } + \mathrm { i } \sin \frac { n \pi } { 3 } \right)$$
    3. Show that $$\alpha ^ { n } + \beta ^ { n } + \gamma ^ { n } = 2 ^ { 2 n + 1 } \cos \frac { n \pi } { 3 } + \left( - \frac { 1 } { 2 } \right) ^ { n }$$ where \(n\) is an integer.
Question 4
View details
4 A curve \(C\) is given parametrically by the equations $$x = \frac { 1 } { 2 } \cosh 2 t , \quad y = 2 \sinh t$$
  1. Express $$\left( \frac { \mathrm { d } x } { \mathrm {~d} t } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 }$$ in terms of \(\cosh t\).
  2. The arc of \(C\) from \(t = 0\) to \(t = 1\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
    1. Show that \(S\), the area of the curved surface generated, is given by $$S = 8 \pi \int _ { 0 } ^ { 1 } \sinh t \cosh ^ { 2 } t \mathrm {~d} t$$
    2. Find the exact value of \(S\).
Question 5
View details
5 The sum to \(r\) terms, \(S _ { r }\), of a series is given by $$S _ { r } = r ^ { 2 } ( r + 1 ) ( r + 2 )$$ Given that \(u _ { r }\) is the \(r\) th term of the series whose sum is \(S _ { r }\), show that:
    1. \(u _ { 1 } = 6\);
    2. \(u _ { 2 } = 42\);
    3. \(\quad u _ { n } = n ( n + 1 ) ( 4 n - 1 )\).
  1. Show that $$\sum _ { r = n + 1 } ^ { 2 n } u _ { r } = 3 n ^ { 2 } ( n + 1 ) ( 5 n + 2 )$$
Question 6
View details
6
  1. Show that the substitution \(t = \tan \theta\) transforms the integral $$\int \frac { \mathrm { d } \theta } { 9 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta }$$ into $$\int \frac { \mathrm { d } t } { 9 + t ^ { 2 } }$$
  2. Hence show that $$\int _ { 0 } ^ { \frac { \pi } { 3 } } \frac { d \theta } { 9 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta } = \frac { \pi } { 18 }$$
Question 7
View details
7 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 2 , \quad u _ { k + 1 } = 2 u _ { k } + 1$$
  1. Prove by induction that, for all \(n \geqslant 1\), $$u _ { n } = 3 \times 2 ^ { n - 1 } - 1$$
  2. Show that $$\sum _ { r = 1 } ^ { n } u _ { r } = u _ { n + 1 } - ( n + 2 )$$
Question 8
View details
8
    1. Show that \(\omega = \mathrm { e } ^ { \frac { 2 \pi \mathrm { i } } { 7 } }\) is a root of the equation \(z ^ { 7 } = 1\).
    2. Write down the five other non-real roots in terms of \(\omega\).
  1. Show that $$1 + \omega + \omega ^ { 2 } + \omega ^ { 3 } + \omega ^ { 4 } + \omega ^ { 5 } + \omega ^ { 6 } = 0$$
  2. Show that:
    1. \(\quad \omega ^ { 2 } + \omega ^ { 5 } = 2 \cos \frac { 4 \pi } { 7 }\);
    2. \(\cos \frac { 2 \pi } { 7 } + \cos \frac { 4 \pi } { 7 } + \cos \frac { 6 \pi } { 7 } = - \frac { 1 } { 2 }\).