A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Complex Numbers Argand & Loci
Q2
AQA FP2 2010 January — Question 2
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2010
Session
January
Topic
Complex Numbers Argand & Loci
2
On the same Argand diagram, draw:
the locus of points satisfying \(| z - 4 + 2 \mathrm { i } | = 4\);
the locus of points satisfying \(| z | = | z - 2 \mathrm { i } |\).
Indicate on your sketch the set of points satisfying both $$| z - 4 + 2 i | \leqslant 4$$ and $$| z | \geqslant | z - 2 \mathrm { i } |$$
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8