AQA FP2 2010 January — Question 1

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2010
SessionJanuary
TopicHyperbolic functions

1
  1. Use the definitions \(\cosh x = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\) and \(\sinh x = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } \right)\) to show that $$\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1$$
    1. Express $$5 \cosh ^ { 2 } x + 3 \sinh ^ { 2 } x$$ in terms of \(\cosh x\).
    2. Sketch the curve \(y = \cosh x\).
    3. Hence solve the equation $$5 \cosh ^ { 2 } x + 3 \sinh ^ { 2 } x = 9.5$$ giving your answers in logarithmic form.