Find or specify CDF

A question is this type if and only if it asks to find the cumulative distribution function F(x) by integrating the PDF, or to specify it for all values of x.

20 questions

CAIE Further Paper 4 2023 June Q6
6 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 3 } { 28 } \left( e ^ { \frac { 1 } { 2 } x } + 4 e ^ { - \frac { 1 } { 2 } x } \right) & 0 \leqslant x \leqslant 2 \ln 3
0 & \text { otherwise } \end{cases}$$
  1. Find the cumulative distribution function of \(X\).
    The random variable \(Y\) is defined by \(Y = e ^ { \frac { 1 } { 2 } ( X ) }\).
  2. Find the probability density function of \(Y\).
  3. Find the 30th percentile of \(Y\).
  4. Find \(\mathrm { E } \left( Y ^ { 4 } \right)\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 4 2024 November Q4
4 The random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 1 } { 21 } ( x - 1 ) ^ { 2 } & 2 \leqslant x \leqslant 5
0 & \text { otherwise } \end{cases}$$
  1. Find the cumulative distribution function of \(X\).
    The random variable \(Y\) is defined by \(Y = ( X - 1 ) ^ { 4 }\).
  2. Find the probability density function of \(Y\).
    \includegraphics[max width=\textwidth, alt={}, center]{b9cbf607-4f40-41bb-8374-6b2c39f945ac-09_2725_35_99_20}
  3. Find the median value of \(Y\).
  4. Find \(\mathrm { E } ( Y )\).
OCR S3 2006 January Q3
3 For a restaurant with a home-delivery service, the delivery time in minutes can be modelled by a continuous random variable \(T\) with probability density function given by $$f ( t ) = \begin{cases} \frac { \pi } { 90 } \sin \left( \frac { \pi t } { 60 } \right) & 20 \leqslant t \leqslant 60
0 & \text { otherwise. } \end{cases}$$
  1. Given that \(20 \leqslant a \leqslant 60\), show that \(\mathrm { P } ( T \leqslant a ) = \frac { 1 } { 3 } \left( 1 - 2 \cos \left( \frac { \pi a } { 60 } \right) \right)\). There is a delivery charge of \(\pounds 3\) but this is reduced to \(\pounds 2\) if the delivery time exceeds a minutes.
  2. Find the value of \(a\) for which the expected value of the delivery charge for a home-delivery is £2.80.
OCR S3 2007 January Q6
6 The lifetime of a particular machine, in months, can be modelled by the random variable \(T\) with probability density function given by $$\mathrm { f } ( t ) = \begin{cases} \frac { 3 } { t ^ { 4 } } & t \geqslant 1
0 & \text { otherwise. } \end{cases}$$
  1. Obtain the (cumulative) distribution function of \(T\).
  2. Show that the probability density function of the random variable \(Y\), where \(Y = T ^ { 3 }\), is given by \(\mathrm { g } ( y ) = \frac { 1 } { y ^ { 2 } }\), for \(y \geqslant 1\).
  3. Find \(\mathrm { E } ( \sqrt { Y } )\).
OCR S3 2012 June Q6
6
\includegraphics[max width=\textwidth, alt={}, center]{054e0081-afce-4a87-93f5-650dad40b313-3_508_611_262_719} The diagram shows the probability density function f of the continuous random variable \(T\), given by $$f ( t ) = \begin{cases} a t & 0 \leqslant t \leqslant 1
a & 1 < t \leqslant 4
0 & \text { otherwise } \end{cases}$$ where \(a\) is a constant.
  1. Find the value of \(a\).
  2. Obtain the cumulative distribution function of \(T\).
  3. Find the cumulative distribution of \(Y\), where \(Y = T ^ { \frac { 1 } { 2 } }\), and hence find the probability density function of \(Y\).
CAIE FP2 2010 June Q11 OR
The continuous random variable \(T\) has probability density function given by $$\mathrm { f } ( t ) = \begin{cases} 0 & t < 2
\frac { 2 } { ( t - 1 ) ^ { 3 } } & t \geqslant 2 \end{cases}$$
  1. Find the distribution function of \(T\), and find also \(\mathrm { P } ( T > 5 )\).
  2. Consecutive independent observations of \(T\) are made until the first observation that exceeds 5 is obtained. The random variable \(N\) is the total number of observations that have been made up to and including the observation exceeding 5. Find \(\mathrm { P } ( N > \mathrm { E } ( N ) )\).
  3. Find the probability density function of \(Y\), where \(Y = \frac { 1 } { T - 1 }\).
Edexcel S2 2022 January Q4
4 The continuous random variable \(X\) has a probability density function given by $$\mathrm { f } ( x ) = \begin{cases} \frac { 1 } { 2 } k ( x - 1 ) & 1 \leqslant x \leqslant 3
k & 3 < x \leqslant 6
\frac { 1 } { 4 } k ( 10 - x ) & 6 < x \leqslant 10
0 & \text { otherwise } \end{cases}$$ where \(k\) is a positive constant.
  1. Sketch \(\mathrm { f } ( x )\) for all values of \(x\)
  2. Show that \(k = \frac { 1 } { 6 }\)
  3. Specify fully the cumulative distribution function \(\mathrm { F } ( x )\) of \(X\) Given that \(\mathrm { E } ( X ) = \frac { 61 } { 12 }\)
  4. find \(\mathrm { P } ( X > \mathrm { E } ( X ) )\)
  5. Describe the skewness of the distribution, giving a reason for your answer.
Edexcel S2 2010 January Q4
  1. The continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) given by
$$f ( x ) = \begin{cases} k \left( x ^ { 2 } - 2 x + 2 \right) & 0 < x \leqslant 3
3 k & 3 < x \leqslant 4
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 1 } { 9 }\)
  2. Find the cumulative distribution function \(\mathrm { F } ( x )\).
  3. Find the mean of \(X\).
  4. Show that the median of \(X\) lies between \(x = 2.6\) and \(x = 2.7\)
Edexcel S2 2012 January Q6
6. A random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { 1 } { 2 } & 0 \leqslant x < 1
x - \frac { 1 } { 2 } & 1 \leqslant x \leqslant k
0 & \text { otherwise } \end{cases}$$ where \(k\) is a positive constant.
  1. Sketch the graph of \(\mathrm { f } ( x )\).
  2. Show that \(k = \frac { 1 } { 2 } ( 1 + \sqrt { 5 } )\).
  3. Define fully the cumulative distribution function \(\mathrm { F } ( x )\).
  4. Find \(\mathrm { P } ( 0.5 < X < 1.5 )\).
  5. Write down the median of \(X\) and the mode of \(X\).
  6. Describe the skewness of the distribution of \(X\). Give a reason for your answer.
AQA S2 2006 January Q7
7 Engineering work on the railway network causes an increase in the journey time of commuters travelling into work each morning. The increase in journey time, \(T\) hours, is modelled by a continuous random variable with probability density function $$\mathrm { f } ( t ) = \begin{cases} 4 t \left( 1 - t ^ { 2 } \right) & 0 \leqslant t \leqslant 1
0 & \text { otherwise } \end{cases}$$
  1. Show that \(\mathrm { E } ( T ) = \frac { 8 } { 15 }\).
    1. Find the cumulative distribution function, \(\mathrm { F } ( t )\), for \(0 \leqslant t \leqslant 1\).
    2. Hence, or otherwise, for a commuter selected at random, find $$\mathrm { P } ( \text { mean } < T < \text { median } )$$
AQA S2 2007 January Q6
6 The waiting time, \(T\) minutes, before being served at a local newsagents can be modelled by a continuous random variable with probability density function $$\mathrm { f } ( t ) = \begin{cases} \frac { 3 } { 8 } t ^ { 2 } & 0 \leqslant t < 1
\frac { 1 } { 16 } ( t + 5 ) & 1 \leqslant t \leqslant 3
0 & \text { otherwise } \end{cases}$$
  1. Sketch the graph of f.
  2. For a customer selected at random, calculate \(\mathrm { P } ( T \geqslant 1 )\).
    1. Show that the cumulative distribution function for \(1 \leqslant t \leqslant 3\) is given by $$\mathrm { F } ( t ) = \frac { 1 } { 32 } \left( t ^ { 2 } + 10 t - 7 \right)$$
    2. Hence find the median waiting time.
Edexcel S2 Q7
7. A continuous random variable \(X\) has a probability density function given by $$\begin{array} { l l } \mathrm { f } ( x ) = \frac { x ^ { 2 } } { 312 } & 4 \leq x \leq 10
\mathrm { f } ( x ) = 0 & \text { otherwise. } \end{array}$$
  1. Find \(\mathrm { E } ( X )\).
  2. Find the variance of \(X\).
  3. Find the cumulative distribution function \(\mathrm { F } ( x )\), for all values of \(x\).
  4. Hence find the median value of \(X\).
  5. Write down the modal value of \(X\). It is sometimes suggested that, for most distributions, $$2 \times ( \text { median } - \text { mean } ) \approx \text { mode } - \text { median } .$$
  6. Show that this result is not satisfied in this case, and suggest a reason why.
WJEC Further Unit 2 2018 June Q1
  1. The random variable \(X\) has the binomial distribution \(\mathrm { B } ( 12,0 \cdot 3 )\). The independent random variable \(Y\) has the Poisson distribution \(\mathrm { Po } ( 4 )\). Find
    1. \(\mathrm { E } ( X Y )\),
    2. \(\quad \operatorname { Var } ( X Y )\).
    3. The length of time a battery works, in tens of hours, is modelled by a random variable \(X\) with cumulative distribution function
    $$F ( x ) = \begin{cases} 0 & \text { for } x < 0
    \frac { x ^ { 3 } } { 432 } ( 8 - x ) & \text { for } 0 \leqslant x \leqslant 6
    1 & \text { for } x > 6 \end{cases}$$
  2. Find \(P ( X > 5 )\).
  3. A head torch uses three of these batteries. All three batteries must work for the torch to operate. Find the probability that the head torch will operate for more than 50 hours.
  4. Show that the upper quartile of the distribution lies between \(4 \cdot 5\) and \(4 \cdot 6\).
  5. Find \(f ( x )\), the probability density function for \(X\).
  6. Find the mean lifetime of the batteries in hours.
  7. The graph of \(f ( x )\) is given below.
    \includegraphics[max width=\textwidth, alt={}, center]{3cf25b54-d4a1-4d30-b632-3f6d3182a930-2_695_1463_1896_299}
WJEC Further Unit 2 2022 June Q4
4. The continuous random variable \(R\) has probability density function \(f ( r )\) given by $$f ( r ) = \begin{cases} k r ( b - r ) & \text { for } 1 \leqslant r \leqslant 4 ,
0 & \text { otherwise } , \end{cases}$$ where \(k\) and \(b\) are positive constants.
  1. Explain why \(b \geqslant 4\).
  2. Given that \(b = 4\),
    1. show that \(k = \frac { 1 } { 9 }\),
    2. find an expression for \(F ( r )\), valid for \(1 \leqslant r \leqslant 4\), where \(F\) denotes the cumulative distribution function of \(R\),
    3. find the probability that \(R\) lies between 2 and 3 .
Edexcel FS2 AS 2019 June Q2
  1. Lloyd regularly takes a break from work to go to the local cafe. The amount of time Lloyd waits to be served, in minutes, is modelled by the continuous random variable \(T\), having probability density function
$$f ( t ) = \left\{ \begin{array} { c c } \frac { t } { 120 } & 4 \leqslant t \leqslant 16
0 & \text { otherwise } \end{array} \right.$$
  1. Show that the cumulative distribution function is given by $$\mathrm { F } ( t ) = \left\{ \begin{array} { c r } 0 & t < 4
    \frac { t ^ { 2 } } { 240 } - c & 4 \leqslant t \leqslant 16
    1 & t > 16 \end{array} \right.$$ where the value of \(c\) is to be found.
  2. Find the exact probability that the amount of time Lloyd waits to be served is between 5 and 10 minutes.
  3. Find the median of \(T\).
  4. Find the value of \(k\) such that $$\mathrm { P } ( T < k ) = \frac { 2 } { 3 } \mathrm { P } ( T > k )$$ giving your answer to 3 significant figures.
Edexcel FS2 AS 2022 June Q2
  1. The graph shows the probability density function \(\mathrm { f } ( x )\) of the continuous random variable \(X\)
    \includegraphics[max width=\textwidth, alt={}, center]{128c408d-3e08-4f74-8f19-d33ecd5c882f-04_951_1365_322_331}
    1. Find \(\mathrm { P } ( X < 4 )\)
    2. Specify the cumulative distribution function of \(X\) for \(7 \leqslant x \leqslant 11\)
Edexcel FS2 AS 2023 June Q2
  1. A continuous random variable \(X\) has probability density function
$$f ( x ) = \left\{ \begin{array} { c c } \frac { x } { 16 } \left( 9 - x ^ { 2 } \right) & 1 \leqslant x \leqslant 3
0 & \text { otherwise } \end{array} \right.$$
  1. Find the cumulative distribution function of \(X\)
  2. Calculate \(\mathrm { P } ( X > 1.8 )\)
  3. Use calculus to find \(\mathrm { E } \left( \frac { 3 } { X } + 2 \right)\)
  4. Show that the mode of \(X\) is \(\sqrt { 3 }\)
SPS SPS FM Statistics 2022 January Q7
7. The continuous random variable \(X\) has probability density function given by $$f ( x ) = \left\{ \begin{array} { c l } 0 & x < 1
\frac { 4 } { x ^ { 5 } } & x \geq 1 \end{array} \right.$$ a. Find the cumulative distribution function, \(F ( x )\), of \(X\).
b. Find the interquartile range of \(X\).
c. Show that the probability density function of \(Y\), where \(Y = \frac { 1 } { X ^ { 2 } }\), is given by $$g ( y ) = \left\{ \begin{array} { c l } 2 y & 0 < y \leq 1
0 & \text { otherwise } \end{array} \right.$$ d. Find the value of \(a\) for which \(\mathrm { E } \left( \frac { 1 } { X ^ { 2 } } \right) = a \mathrm { E } \left( X ^ { 2 } \right)\).
AQA S2 2009 January Q7
7 The continuous random variable \(X\) has the probability density function given by $$f ( x ) = \left\{ \begin{array} { c c } \frac { 1 } { 16 } x ^ { 3 } & 0 \leqslant x \leqslant 2
\frac { 1 } { 6 } ( 5 - x ) & 2 \leqslant x \leqslant 5
0 & \text { otherwise } \end{array} \right.$$
  1. Sketch the graph of f.
  2. Prove that the cumulative distribution function of \(X\) for \(2 \leqslant x \leqslant 5\) can be written in the form $$\mathrm { F } ( x ) = 1 - \frac { 1 } { 12 } ( 5 - x ) ^ { 2 }$$
  3. Hence, or otherwise, determine \(\mathrm { P } ( X \geqslant 3 \mid X \leqslant 4 )\).
AQA Further Paper 3 Statistics 2023 June Q8
8 The continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} k \sin 2 x & 0 \leq x \leq \frac { \pi } { 6 }
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant. 8
  1. Show that \(k = 4\)
    8
  2. Find the cumulative distribution function \(\mathrm { F } ( x )\)
    8
  3. Find the median of \(X\), giving your answer to three significant figures. 8
  4. Find the mean of \(X\) giving your answer in the form \(\frac { 1 } { a } ( b \sqrt { 3 } - \pi )\) where \(a\) and \(b\) are integers.
    \includegraphics[max width=\textwidth, alt={}, center]{1e2fdd33-afa4-486f-a9e2-1d425ed14eee-14_2492_1721_217_150}