AQA S2 2007 January — Question 6

Exam BoardAQA
ModuleS2 (Statistics 2)
Year2007
SessionJanuary
TopicContinuous Probability Distributions and Random Variables
TypeFind or specify CDF

6 The waiting time, \(T\) minutes, before being served at a local newsagents can be modelled by a continuous random variable with probability density function $$\mathrm { f } ( t ) = \begin{cases} \frac { 3 } { 8 } t ^ { 2 } & 0 \leqslant t < 1
\frac { 1 } { 16 } ( t + 5 ) & 1 \leqslant t \leqslant 3
0 & \text { otherwise } \end{cases}$$
  1. Sketch the graph of f.
  2. For a customer selected at random, calculate \(\mathrm { P } ( T \geqslant 1 )\).
    1. Show that the cumulative distribution function for \(1 \leqslant t \leqslant 3\) is given by $$\mathrm { F } ( t ) = \frac { 1 } { 32 } \left( t ^ { 2 } + 10 t - 7 \right)$$
    2. Hence find the median waiting time.