6. A random variable \(X\) has probability density function given by
$$f ( x ) = \begin{cases} \frac { 1 } { 2 } & 0 \leqslant x < 1
x - \frac { 1 } { 2 } & 1 \leqslant x \leqslant k
0 & \text { otherwise } \end{cases}$$
where \(k\) is a positive constant.
- Sketch the graph of \(\mathrm { f } ( x )\).
- Show that \(k = \frac { 1 } { 2 } ( 1 + \sqrt { 5 } )\).
- Define fully the cumulative distribution function \(\mathrm { F } ( x )\).
- Find \(\mathrm { P } ( 0.5 < X < 1.5 )\).
- Write down the median of \(X\) and the mode of \(X\).
- Describe the skewness of the distribution of \(X\). Give a reason for your answer.