Edexcel S2 2012 January — Question 6

Exam BoardEdexcel
ModuleS2 (Statistics 2)
Year2012
SessionJanuary
TopicContinuous Probability Distributions and Random Variables
TypeFind or specify CDF

6. A random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { 1 } { 2 } & 0 \leqslant x < 1
x - \frac { 1 } { 2 } & 1 \leqslant x \leqslant k
0 & \text { otherwise } \end{cases}$$ where \(k\) is a positive constant.
  1. Sketch the graph of \(\mathrm { f } ( x )\).
  2. Show that \(k = \frac { 1 } { 2 } ( 1 + \sqrt { 5 } )\).
  3. Define fully the cumulative distribution function \(\mathrm { F } ( x )\).
  4. Find \(\mathrm { P } ( 0.5 < X < 1.5 )\).
  5. Write down the median of \(X\) and the mode of \(X\).
  6. Describe the skewness of the distribution of \(X\). Give a reason for your answer.