6 The lifetime of a particular machine, in months, can be modelled by the random variable \(T\) with probability density function given by
$$\mathrm { f } ( t ) = \begin{cases} \frac { 3 } { t ^ { 4 } } & t \geqslant 1
0 & \text { otherwise. } \end{cases}$$
- Obtain the (cumulative) distribution function of \(T\).
- Show that the probability density function of the random variable \(Y\), where \(Y = T ^ { 3 }\), is given by \(\mathrm { g } ( y ) = \frac { 1 } { y ^ { 2 } }\), for \(y \geqslant 1\).
- Find \(\mathrm { E } ( \sqrt { Y } )\).