7 Engineering work on the railway network causes an increase in the journey time of commuters travelling into work each morning.
The increase in journey time, \(T\) hours, is modelled by a continuous random variable with probability density function
$$\mathrm { f } ( t ) = \begin{cases} 4 t \left( 1 - t ^ { 2 } \right) & 0 \leqslant t \leqslant 1
0 & \text { otherwise } \end{cases}$$
- Show that \(\mathrm { E } ( T ) = \frac { 8 } { 15 }\).
- Find the cumulative distribution function, \(\mathrm { F } ( t )\), for \(0 \leqslant t \leqslant 1\).
- Hence, or otherwise, for a commuter selected at random, find
$$\mathrm { P } ( \text { mean } < T < \text { median } )$$