| Exam Board | SPS |
| Module | SPS FM Statistics (SPS FM Statistics) |
| Year | 2022 |
| Session | January |
| Topic | Continuous Probability Distributions and Random Variables |
| Type | Find or specify CDF |
7. The continuous random variable \(X\) has probability density function given by
$$f ( x ) = \left\{ \begin{array} { c l }
0 & x < 1
\frac { 4 } { x ^ { 5 } } & x \geq 1
\end{array} \right.$$
a. Find the cumulative distribution function, \(F ( x )\), of \(X\).
b. Find the interquartile range of \(X\).
c. Show that the probability density function of \(Y\), where \(Y = \frac { 1 } { X ^ { 2 } }\), is given by
$$g ( y ) = \left\{ \begin{array} { c l }
2 y & 0 < y \leq 1
0 & \text { otherwise }
\end{array} \right.$$
d. Find the value of \(a\) for which \(\mathrm { E } \left( \frac { 1 } { X ^ { 2 } } \right) = a \mathrm { E } \left( X ^ { 2 } \right)\).