4 The random variable \(X\) has probability density function f given by
$$f ( x ) = \begin{cases} \frac { 1 } { 21 } ( x - 1 ) ^ { 2 } & 2 \leqslant x \leqslant 5
0 & \text { otherwise } \end{cases}$$
- Find the cumulative distribution function of \(X\).
The random variable \(Y\) is defined by \(Y = ( X - 1 ) ^ { 4 }\). - Find the probability density function of \(Y\).
\includegraphics[max width=\textwidth, alt={}, center]{b9cbf607-4f40-41bb-8374-6b2c39f945ac-09_2725_35_99_20} - Find the median value of \(Y\).
- Find \(\mathrm { E } ( Y )\).