- A continuous random variable \(X\) has probability density function
$$f ( x ) = \left\{ \begin{array} { c c }
\frac { x } { 16 } \left( 9 - x ^ { 2 } \right) & 1 \leqslant x \leqslant 3
0 & \text { otherwise }
\end{array} \right.$$
- Find the cumulative distribution function of \(X\)
- Calculate \(\mathrm { P } ( X > 1.8 )\)
- Use calculus to find \(\mathrm { E } \left( \frac { 3 } { X } + 2 \right)\)
- Show that the mode of \(X\) is \(\sqrt { 3 }\)