4. The continuous random variable \(R\) has probability density function \(f ( r )\) given by
$$f ( r ) = \begin{cases} k r ( b - r ) & \text { for } 1 \leqslant r \leqslant 4 ,
0 & \text { otherwise } , \end{cases}$$
where \(k\) and \(b\) are positive constants.
- Explain why \(b \geqslant 4\).
- Given that \(b = 4\),
- show that \(k = \frac { 1 } { 9 }\),
- find an expression for \(F ( r )\), valid for \(1 \leqslant r \leqslant 4\), where \(F\) denotes the cumulative distribution function of \(R\),
- find the probability that \(R\) lies between 2 and 3 .