WJEC Further Unit 2 2022 June — Question 4

Exam BoardWJEC
ModuleFurther Unit 2 (Further Unit 2)
Year2022
SessionJune
TopicContinuous Probability Distributions and Random Variables
TypeFind or specify CDF

4. The continuous random variable \(R\) has probability density function \(f ( r )\) given by $$f ( r ) = \begin{cases} k r ( b - r ) & \text { for } 1 \leqslant r \leqslant 4 ,
0 & \text { otherwise } , \end{cases}$$ where \(k\) and \(b\) are positive constants.
  1. Explain why \(b \geqslant 4\).
  2. Given that \(b = 4\),
    1. show that \(k = \frac { 1 } { 9 }\),
    2. find an expression for \(F ( r )\), valid for \(1 \leqslant r \leqslant 4\), where \(F\) denotes the cumulative distribution function of \(R\),
    3. find the probability that \(R\) lies between 2 and 3 .