Composite body MI calculation

A question is this type if and only if it requires finding the moment of inertia of a composite rigid body (made of multiple standard components such as rods, discs, rings, particles, shells) by combining standard results and the parallel/perpendicular axes theorems, without requiring integration.

25 questions · Challenging +1.3

Sort by: Default | Easiest first | Hardest first
CAIE FP2 2011 June Q11 EITHER
Challenging +1.8
\includegraphics[max width=\textwidth, alt={}]{e8a16ec8-b6b7-4b0c-b0c1-8f5f7a9e4fa6-5_511_508_392_817}
A rigid body is made from uniform wire of negligible thickness and is in the form of a square \(A B C D\) of mass \(M\) enclosed within a circular ring of radius \(a\) and mass \(2 M\). The centres of the square and the circle coincide at \(O\) and the corners of the square are joined to the circle (see diagram). Show that the moment of inertia of the body about an axis through \(O\), perpendicular to the plane of the body, is \(\frac { 8 } { 3 } M a ^ { 2 }\). Hence find the moment of inertia of the body about an axis \(l\), through \(A\), in the plane of the body and tangential to the circle. A particle \(P\) of mass \(M\) is now attached to the body at \(C\). The system is able to rotate freely about the fixed axis \(l\), which is horizontal. The system is released from rest with \(A C\) making an angle of \(60 ^ { \circ }\) with the upward vertical. Find, in terms of \(a\) and \(g\), the greatest speed of \(P\) in the subsequent motion.
CAIE FP2 2011 June Q11 EITHER
Challenging +1.8
\includegraphics[max width=\textwidth, alt={}]{020ebd88-b920-40ce-84cf-5c26d45e2935-5_511_508_392_817}
A rigid body is made from uniform wire of negligible thickness and is in the form of a square \(A B C D\) of mass \(M\) enclosed within a circular ring of radius \(a\) and mass \(2 M\). The centres of the square and the circle coincide at \(O\) and the corners of the square are joined to the circle (see diagram). Show that the moment of inertia of the body about an axis through \(O\), perpendicular to the plane of the body, is \(\frac { 8 } { 3 } M a ^ { 2 }\). Hence find the moment of inertia of the body about an axis \(l\), through \(A\), in the plane of the body and tangential to the circle. A particle \(P\) of mass \(M\) is now attached to the body at \(C\). The system is able to rotate freely about the fixed axis \(l\), which is horizontal. The system is released from rest with \(A C\) making an angle of \(60 ^ { \circ }\) with the upward vertical. Find, in terms of \(a\) and \(g\), the greatest speed of \(P\) in the subsequent motion.
CAIE FP2 2011 June Q2
11 marks Challenging +1.8
2
\includegraphics[max width=\textwidth, alt={}, center]{3daca234-9b7f-41d4-bbaa-d35615a120fc-2_510_755_667_696} A uniform circular disc with centre \(A\) has mass \(M\) and radius \(3 a\). A second uniform circular disc with centre \(B\) has mass \(\frac { 1 } { 9 } M\) and radius \(a\). The two discs are rigidly joined together so that they lie in the same plane with their circumferences touching. The line of centres meets the circumference of the larger disc at \(P\) and the circumference of the smaller disc at \(O\). A particle of mass \(\frac { 1 } { 3 } M\) is attached at \(P\) (see diagram). Show that the moment of inertia of the system about an axis through \(O\), perpendicular to the plane of the discs, is \(51 M a ^ { 2 }\). The system is free to rotate about a fixed horizontal axis through \(O\), perpendicular to the plane of the discs. The system is held with \(O P\) horizontal and is then released from rest. Given that \(a = 0.5 \mathrm {~m}\), find the greatest speed of \(P\) in the subsequent motion, giving your answer correct to 2 significant figures.
[0pt] [5]
CAIE FP2 2015 June Q11 EITHER
Hard +2.3
\includegraphics[max width=\textwidth, alt={}]{baea9836-ea05-442f-9e87-a2a1480dc74c-5_691_698_440_721}
A uniform disc, with centre \(O\) and radius \(a\), is surrounded by a uniform concentric ring with radius \(3 a\). The ring is rigidly attached to the rim of the disc by four symmetrically positioned uniform rods, each of mass \(\frac { 3 } { 2 } m\) and length \(2 a\). The disc and the ring each have mass \(2 m\). The rods meet the ring at the points \(A , B , C\) and \(D\). The disc, the ring and the rods are all in the same plane (see diagram). Show that the moment of inertia of this object about an axis through \(O\) perpendicular to the plane of the object is \(45 m a ^ { 2 }\). Find the moment of inertia of the object about an axis \(l\) through \(A\) in the plane of the object and tangential to the ring. A particle of mass \(3 m\) is now attached to the object at \(C\). The object, including the additional particle, is suspended from the point \(A\) and hangs in equilibrium. It is free to rotate about the axis \(l\). The centre of the disc is given a horizontal speed \(u\). When, in the subsequent motion, the object comes to instantaneous rest, \(C\) is below the level of \(A\) and \(A C\) makes an angle \(\sin ^ { - 1 } \left( \frac { 1 } { 4 } \right)\) with the horizontal. Find \(u\) in terms of \(a\) and \(g\).
CAIE FP2 2015 June Q11 EITHER
Hard +2.3
\includegraphics[max width=\textwidth, alt={}]{eb3dccaf-d151-472d-82f3-6ba215b0b7f0-5_691_698_440_721}
A uniform disc, with centre \(O\) and radius \(a\), is surrounded by a uniform concentric ring with radius \(3 a\). The ring is rigidly attached to the rim of the disc by four symmetrically positioned uniform rods, each of mass \(\frac { 3 } { 2 } m\) and length \(2 a\). The disc and the ring each have mass \(2 m\). The rods meet the ring at the points \(A , B , C\) and \(D\). The disc, the ring and the rods are all in the same plane (see diagram). Show that the moment of inertia of this object about an axis through \(O\) perpendicular to the plane of the object is \(45 m a ^ { 2 }\). Find the moment of inertia of the object about an axis \(l\) through \(A\) in the plane of the object and tangential to the ring. A particle of mass \(3 m\) is now attached to the object at \(C\). The object, including the additional particle, is suspended from the point \(A\) and hangs in equilibrium. It is free to rotate about the axis \(l\). The centre of the disc is given a horizontal speed \(u\). When, in the subsequent motion, the object comes to instantaneous rest, \(C\) is below the level of \(A\) and \(A C\) makes an angle \(\sin ^ { - 1 } \left( \frac { 1 } { 4 } \right)\) with the horizontal. Find \(u\) in terms of \(a\) and \(g\).
CAIE FP2 2017 June Q11 EITHER
Challenging +1.8
\includegraphics[max width=\textwidth, alt={}]{b10d2991-abff-4d2b-b470-1df844d1c7ee-20_312_787_440_678}
The diagram shows a uniform thin rod \(A B\) of length \(3 a\) and mass \(8 m\). The end \(A\) is rigidly attached to the surface of a sphere with centre \(O\) and radius \(a\). The rod is perpendicular to the surface of the sphere. The sphere consists of two parts: an inner uniform solid sphere of mass \(\frac { 3 } { 2 } m\) and radius \(a\) surrounded by a thin uniform spherical shell of mass \(m\) and also of radius \(a\). The horizontal axis \(l\) is perpendicular to the rod and passes through the point \(C\) on the rod where \(A C = a\).
  1. Show that the moment of inertia of the object, consisting of rod, shell and inner sphere, about the axis \(l\) is \(\frac { 289 } { 15 } m a ^ { 2 }\).
    The object is free to rotate about the axis \(l\). The object is held so that \(C A\) makes an angle \(\alpha\) with the downward vertical and is released from rest.
  2. Given that \(\cos \alpha = \frac { 1 } { 6 }\), find the greatest speed achieved by the centre of the sphere in the subsequent motion.
CAIE FP2 2008 November Q1
5 marks Challenging +1.2
1 A uniform wire, of length \(24 a\) and mass \(m\), is bent into the form of a triangle \(A B C\) with angle \(A B C = 90 ^ { \circ }\), \(A B = 6 a\) and \(B C = 8 a\) (see diagram). Find the moment of inertia of the wire about an axis through \(A\) perpendicular to the plane of the wire.
CAIE FP2 2012 November Q1
5 marks Standard +0.8
1
\includegraphics[max width=\textwidth, alt={}, center]{34024618-0ff9-44a1-ac57-d4d7e8a3655e-2_216_1205_253_470} A rigid body consists of two uniform circular discs, each of mass \(m\) and radius \(a\), the centres of which are rigidly attached to the ends \(A\) and \(B\) of a uniform rod of mass \(3 m\) and length \(10 a\). The discs and the rod are in the same plane and \(O\) is the point on the rod such that \(A O = 4 a\) (see diagram). Show that the moment of inertia of the body about an axis through \(O\) perpendicular to the plane of the discs is \(81 m a ^ { 2 }\).
CAIE FP2 2012 November Q1
5 marks Standard +0.8
1
\includegraphics[max width=\textwidth, alt={}, center]{d3e9a568-a9ea-483e-8e65-90fdc4a69781-2_216_1205_253_470} A rigid body consists of two uniform circular discs, each of mass \(m\) and radius \(a\), the centres of which are rigidly attached to the ends \(A\) and \(B\) of a uniform rod of mass \(3 m\) and length \(10 a\). The discs and the rod are in the same plane and \(O\) is the point on the rod such that \(A O = 4 a\) (see diagram). Show that the moment of inertia of the body about an axis through \(O\) perpendicular to the plane of the discs is \(81 m a ^ { 2 }\).
CAIE FP2 2013 November Q1
6 marks Challenging +1.2
1
\includegraphics[max width=\textwidth, alt={}, center]{b486decd-75b8-44bd-889f-2472f1163871-2_553_435_258_854} Three identical uniform rods, \(A B , B C\) and \(C D\), each of mass \(M\) and length \(2 a\), are rigidly joined to form three sides of a square. A uniform circular disc, of mass \(\frac { 2 } { 3 } M\) and radius \(a\), has the opposite ends of one of its diameters attached to \(A\) and \(D\) respectively. The disc and the rods all lie in the same plane (see diagram). Find the moment of inertia of the system about the axis \(A D\).
CAIE FP2 2014 November Q11 EITHER
Challenging +1.8
\includegraphics[max width=\textwidth, alt={}]{2c6b6722-ebba-4ade-9a9d-dd70e61cf52b-5_595_522_477_810}
A uniform plane object consists of three identical circular rings, \(X , Y\) and \(Z\), enclosed in a larger circular ring \(W\). Each of the inner rings has mass \(m\) and radius \(r\). The outer ring has mass \(3 m\) and radius \(R\). The centres of the inner rings lie at the vertices of an equilateral triangle of side \(2 r\). The outer ring touches each of the inner rings and the rings are rigidly joined together. The fixed axis \(A B\) is the diameter of \(W\) that passes through the centre of \(X\) and the point of contact of \(Y\) and \(Z\) (see diagram). It is given that \(R = \left( 1 + \frac { 2 } { 3 } \sqrt { } 3 \right) r\).
  1. Show that the moment of inertia of the object about \(A B\) is \(( 7 + 2 \sqrt { } 3 ) m r ^ { 2 }\). The line \(C D\) is the diameter of \(W\) that is perpendicular to \(A B\). A particle of mass \(9 m\) is attached to \(D\). The object is now held with its plane horizontal. It is released from rest and rotates freely about the fixed horizontal axis \(A B\).
  2. Find, in terms of \(g\) and \(r\), the angular speed of the object when it has rotated through \(60 ^ { \circ }\).
CAIE FP2 2014 November Q11 EITHER
Challenging +1.8
\includegraphics[max width=\textwidth, alt={}]{699490ab-a01a-46e2-aa7c-3fd48c962c0c-5_595_522_477_810}
A uniform plane object consists of three identical circular rings, \(X , Y\) and \(Z\), enclosed in a larger circular ring \(W\). Each of the inner rings has mass \(m\) and radius \(r\). The outer ring has mass \(3 m\) and radius \(R\). The centres of the inner rings lie at the vertices of an equilateral triangle of side \(2 r\). The outer ring touches each of the inner rings and the rings are rigidly joined together. The fixed axis \(A B\) is the diameter of \(W\) that passes through the centre of \(X\) and the point of contact of \(Y\) and \(Z\) (see diagram). It is given that \(R = \left( 1 + \frac { 2 } { 3 } \sqrt { } 3 \right) r\).
  1. Show that the moment of inertia of the object about \(A B\) is \(( 7 + 2 \sqrt { } 3 ) m r ^ { 2 }\). The line \(C D\) is the diameter of \(W\) that is perpendicular to \(A B\). A particle of mass \(9 m\) is attached to \(D\). The object is now held with its plane horizontal. It is released from rest and rotates freely about the fixed horizontal axis \(A B\).
  2. Find, in terms of \(g\) and \(r\), the angular speed of the object when it has rotated through \(60 ^ { \circ }\).
CAIE FP2 2014 November Q11 EITHER
Challenging +1.8
\includegraphics[max width=\textwidth, alt={}]{5d40f5b4-e3d4-482c-8d8d-05a01bd3b43f-5_595_522_477_810}
A uniform plane object consists of three identical circular rings, \(X , Y\) and \(Z\), enclosed in a larger circular ring \(W\). Each of the inner rings has mass \(m\) and radius \(r\). The outer ring has mass \(3 m\) and radius \(R\). The centres of the inner rings lie at the vertices of an equilateral triangle of side \(2 r\). The outer ring touches each of the inner rings and the rings are rigidly joined together. The fixed axis \(A B\) is the diameter of \(W\) that passes through the centre of \(X\) and the point of contact of \(Y\) and \(Z\) (see diagram). It is given that \(R = \left( 1 + \frac { 2 } { 3 } \sqrt { } 3 \right) r\).
  1. Show that the moment of inertia of the object about \(A B\) is \(( 7 + 2 \sqrt { } 3 ) m r ^ { 2 }\). The line \(C D\) is the diameter of \(W\) that is perpendicular to \(A B\). A particle of mass \(9 m\) is attached to \(D\). The object is now held with its plane horizontal. It is released from rest and rotates freely about the fixed horizontal axis \(A B\).
  2. Find, in terms of \(g\) and \(r\), the angular speed of the object when it has rotated through \(60 ^ { \circ }\).
CAIE FP2 2016 November Q10 EITHER
Challenging +1.2
\includegraphics[max width=\textwidth, alt={}]{58728f93-bfdb-4f76-a9b9-3a1d1592bfc9-6_515_625_411_758}
A thin uniform rod \(A B\) has mass \(2 m\) and length \(3 a\). Two identical uniform discs each have mass \(\frac { 1 } { 2 } m\) and radius \(a\). The centre of one of the discs is rigidly attached to the end \(A\) of the rod and the centre of the other disc is rigidly attached to the end \(B\) of the rod. The plane of each disc is perpendicular to the rod \(A B\). A second thin uniform rod \(O C\) has mass \(m\) and length \(2 a\). The end \(C\) of this rod is rigidly attached to the mid-point of \(A B\), with \(O C\) perpendicular to \(A B\) (see diagram). The object consisting of the two discs and two rods is free to rotate about a horizontal axis \(l\), through \(O\), which is perpendicular to both rods.
  1. Show that the moment of inertia of one of the discs about \(l\) is \(\frac { 13 } { 4 } m a ^ { 2 }\).
  2. Show that the moment of inertia of the object about \(l\) is \(\frac { 52 } { 3 } m a ^ { 2 }\). When the object is suspended from \(O\) and is hanging in equilibrium, the point \(C\) is given a speed of \(\sqrt { } ( 2 a g )\) in the direction parallel to \(A B\). In the subsequent motion, the angle through which \(O C\) has turned before the object comes to instantaneous rest is \(\theta\).
  3. Show that \(\cos \theta = \frac { 8 } { 21 }\).
CAIE FP2 2016 November Q10 EITHER
Challenging +1.2
\includegraphics[max width=\textwidth, alt={}]{62d0d8cb-8f8c-4298-9705-71a735a9a4e7-6_515_625_411_758}
A thin uniform rod \(A B\) has mass \(2 m\) and length \(3 a\). Two identical uniform discs each have mass \(\frac { 1 } { 2 } m\) and radius \(a\). The centre of one of the discs is rigidly attached to the end \(A\) of the rod and the centre of the other disc is rigidly attached to the end \(B\) of the rod. The plane of each disc is perpendicular to the rod \(A B\). A second thin uniform rod \(O C\) has mass \(m\) and length \(2 a\). The end \(C\) of this rod is rigidly attached to the mid-point of \(A B\), with \(O C\) perpendicular to \(A B\) (see diagram). The object consisting of the two discs and two rods is free to rotate about a horizontal axis \(l\), through \(O\), which is perpendicular to both rods.
  1. Show that the moment of inertia of one of the discs about \(l\) is \(\frac { 13 } { 4 } m a ^ { 2 }\).
  2. Show that the moment of inertia of the object about \(l\) is \(\frac { 52 } { 3 } m a ^ { 2 }\). When the object is suspended from \(O\) and is hanging in equilibrium, the point \(C\) is given a speed of \(\sqrt { } ( 2 a g )\) in the direction parallel to \(A B\). In the subsequent motion, the angle through which \(O C\) has turned before the object comes to instantaneous rest is \(\theta\).
  3. Show that \(\cos \theta = \frac { 8 } { 21 }\).
CAIE FP2 2016 November Q10 EITHER
Challenging +1.2
\includegraphics[max width=\textwidth, alt={}]{184020e1-7ff2-4172-8d33-baff963afa76-6_515_625_411_758}
A thin uniform rod \(A B\) has mass \(2 m\) and length \(3 a\). Two identical uniform discs each have mass \(\frac { 1 } { 2 } m\) and radius \(a\). The centre of one of the discs is rigidly attached to the end \(A\) of the rod and the centre of the other disc is rigidly attached to the end \(B\) of the rod. The plane of each disc is perpendicular to the rod \(A B\). A second thin uniform rod \(O C\) has mass \(m\) and length \(2 a\). The end \(C\) of this rod is rigidly attached to the mid-point of \(A B\), with \(O C\) perpendicular to \(A B\) (see diagram). The object consisting of the two discs and two rods is free to rotate about a horizontal axis \(l\), through \(O\), which is perpendicular to both rods.
  1. Show that the moment of inertia of one of the discs about \(l\) is \(\frac { 13 } { 4 } m a ^ { 2 }\).
  2. Show that the moment of inertia of the object about \(l\) is \(\frac { 52 } { 3 } m a ^ { 2 }\). When the object is suspended from \(O\) and is hanging in equilibrium, the point \(C\) is given a speed of \(\sqrt { } ( 2 a g )\) in the direction parallel to \(A B\). In the subsequent motion, the angle through which \(O C\) has turned before the object comes to instantaneous rest is \(\theta\).
  3. Show that \(\cos \theta = \frac { 8 } { 21 }\).
CAIE FP2 2018 November Q2
9 marks Standard +0.3
2 Two uniform small smooth spheres \(A\) and \(B\) have equal radii and masses \(5 m\) and \(2 m\) respectively. Sphere \(A\) is moving with speed \(u\) on a smooth horizontal surface when it collides directly with sphere \(B\) which is moving towards it with speed \(2 u\). The coefficient of restitution between the spheres is \(e\).
  1. Show that the speed of \(B\) after the collision is \(\frac { 1 } { 7 } u ( 1 + 15 e )\) and find an expression for the speed of \(A\).
    In the collision, the speed of \(A\) is halved and its direction of motion is reversed.
  2. Find the value of \(e\).
  3. For this collision, find the ratio of the loss of kinetic energy of \(A\) to the loss of kinetic energy of \(B\).
    \includegraphics[max width=\textwidth, alt={}, center]{89a83576-4568-46c8-8872-f59f2397627d-04_630_332_264_900} A uniform disc, of radius \(a\) and mass \(2 M\), is attached to a thin uniform rod \(A B\) of length \(6 a\) and mass \(M\). The rod lies along a diameter of the disc, so that the centre of the disc is a distance \(x\) from \(A\) (see diagram).
  4. Find the moment of inertia of the object, consisting of disc and rod, about a fixed horizontal axis \(l\) through \(A\) and perpendicular to the plane of the disc.
    The object is free to rotate about the axis \(l\). The object is held with \(A B\) horizontal and is released from rest. When \(A B\) makes an angle \(\theta\) with the vertical, where \(\cos \theta = \frac { 3 } { 5 }\), the angular speed of the object is \(\sqrt { } \left( \frac { 2 g } { 5 a } \right)\).
  5. Find the possible values of \(x\).
CAIE FP2 2018 November Q2
9 marks Standard +0.3
2 Two uniform small smooth spheres \(A\) and \(B\) have equal radii and masses \(5 m\) and \(2 m\) respectively. Sphere \(A\) is moving with speed \(u\) on a smooth horizontal surface when it collides directly with sphere \(B\) which is moving towards it with speed \(2 u\). The coefficient of restitution between the spheres is \(e\).
  1. Show that the speed of \(B\) after the collision is \(\frac { 1 } { 7 } u ( 1 + 15 e )\) and find an expression for the speed of \(A\).
    In the collision, the speed of \(A\) is halved and its direction of motion is reversed.
  2. Find the value of \(e\).
  3. For this collision, find the ratio of the loss of kinetic energy of \(A\) to the loss of kinetic energy of \(B\).
    \includegraphics[max width=\textwidth, alt={}, center]{f2073c6e-0f76-4246-89a7-2f3a9f7aaff8-04_630_332_264_900} A uniform disc, of radius \(a\) and mass \(2 M\), is attached to a thin uniform rod \(A B\) of length \(6 a\) and mass \(M\). The rod lies along a diameter of the disc, so that the centre of the disc is a distance \(x\) from \(A\) (see diagram).
  4. Find the moment of inertia of the object, consisting of disc and rod, about a fixed horizontal axis \(l\) through \(A\) and perpendicular to the plane of the disc.
    The object is free to rotate about the axis \(l\). The object is held with \(A B\) horizontal and is released from rest. When \(A B\) makes an angle \(\theta\) with the vertical, where \(\cos \theta = \frac { 3 } { 5 }\), the angular speed of the object is \(\sqrt { } \left( \frac { 2 g } { 5 a } \right)\).
  5. Find the possible values of \(x\).
OCR M4 2003 June Q2
5 marks Standard +0.8
2
\includegraphics[max width=\textwidth, alt={}, center]{de53978b-aa96-4fa2-a928-81a16450154e-2_462_490_610_834} The diagram shows a uniform lamina \(A B C D E F\) in which all the corners are right angles. The mass of the lamina is \(3 m\).
  1. Show that the moment of inertia of the lamina about \(A B\) is \(3 m a ^ { 2 }\).
  2. Find the moment of inertia of the lamina about an axis perpendicular to the lamina and passing through \(A\).
OCR M4 2017 June Q3
17 marks Challenging +1.2
3
\includegraphics[max width=\textwidth, alt={}, center]{57323af2-8cf3-4721-b2c8-a968264be343-2_439_444_1318_822} A uniform rod \(A B\) has mass \(m\) and length \(4 a\). The rod can rotate in a vertical plane about a smooth fixed horizontal axis passing through \(A\). One end of a light elastic string of natural length \(a\) and modulus of elasticity \(\lambda m g\) is attached to \(B\). The other end of the string is attached to a small light ring which slides on a fixed smooth horizontal rail which is in the same vertical plane as the rod. The rail is a vertical distance \(3 a\) above \(A\). The string is always vertical and the rod makes an angle \(\theta\) radians with the horizontal, where \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\) (see diagram).
  1. Taking \(A\) as the reference level for gravitational potential energy, find an expression for the total potential energy \(V\) of the system, and show that $$\frac { \mathrm { d } V } { \mathrm {~d} \theta } = 2 m g a \cos \theta ( 4 \lambda ( 1 + 2 \sin \theta ) - 1 ) .$$ Determine the positions of equilibrium and the nature of their stability in the cases
  2. \(\lambda > \frac { 1 } { 12 }\),
  3. \(\lambda < \frac { 1 } { 12 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{57323af2-8cf3-4721-b2c8-a968264be343-3_392_689_269_671} The diagram shows the curve with equation \(y = \frac { 1 } { 2 } \ln x\). The region \(R\), shaded in the diagram, is bounded by the curve, the \(x\)-axis and the line \(x = 4\). A uniform solid of revolution is formed by rotating \(R\) completely about the \(y\)-axis to form a solid of volume \(V\).
  4. Show that \(V = \frac { 1 } { 4 } \pi ( 64 \ln 2 - 15 )\).
  5. Find the exact \(y\)-coordinate of the centre of mass of the solid. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{57323af2-8cf3-4721-b2c8-a968264be343-4_385_741_269_646} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} Fig. 1 shows part of the line \(y = \frac { a } { h } x\), where \(a\) and \(h\) are constants. The shaded region bounded by the line, the \(x\)-axis and the line \(x = h\) is rotated about the \(x\)-axis to form a uniform solid cone of base radius \(a\), height \(h\) and volume \(\frac { 1 } { 3 } \pi a ^ { 2 } h\). The mass of the cone is \(M\).
  6. Show by integration that the moment of inertia of the cone about the \(y\)-axis is \(\frac { 3 } { 20 } M \left( a ^ { 2 } + 4 h ^ { 2 } \right)\). (You may assume the standard formula \(\frac { 1 } { 4 } m r ^ { 2 }\) for the moment of inertia of a uniform disc about a diameter.) \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{57323af2-8cf3-4721-b2c8-a968264be343-4_501_556_1238_726} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure} A uniform solid cone has mass 3 kg , base radius 0.4 m and height 1.2 m . The cone can rotate about a fixed vertical axis passing through its centre of mass with the axis of the cone moving in a horizontal plane. The cone is rotating about this vertical axis at an angular speed of \(9.6 \mathrm { rad } \mathrm { s } ^ { - 1 }\). A stationary particle of mass \(m \mathrm {~kg}\) becomes attached to the vertex of the cone (see Fig. 2). The particle being attached to the cone causes the angular speed to change instantaneously from \(9.6 \mathrm { rad } \mathrm { s } ^ { - 1 }\) to \(7.8 \mathrm { rad } \mathrm { s } ^ { - 1 }\).
  7. Find the value of \(m\).
    \includegraphics[max width=\textwidth, alt={}, center]{57323af2-8cf3-4721-b2c8-a968264be343-5_534_501_255_767} A triangular frame \(A B C\) consists of three uniform rods \(A B , B C\) and \(C A\), rigidly joined at \(A , B\) and \(C\). Each rod has mass \(m\) and length \(2 a\). The frame is free to rotate in a vertical plane about a fixed horizontal axis passing through \(A\). The frame is initially held such that the axis of symmetry through \(A\) is vertical and \(B C\) is below the level of \(A\). The frame starts to rotate with an initial angular speed of \(\omega\) and at time \(t\) the angle between the axis of symmetry through \(A\) and the vertical is \(\theta\) (see diagram).
  8. Show that the moment of inertia of the frame about the axis through \(A\) is \(6 m a ^ { 2 }\).
  9. Show that the angular speed \(\dot { \theta }\) of the frame when it has turned through an angle \(\theta\) satisfies $$a \dot { \theta } ^ { 2 } = a \omega ^ { 2 } - k g \sqrt { 3 } ( 1 - \cos \theta ) ,$$ stating the exact value of the constant \(k\).
    Hence find, in terms of \(a\) and \(g\), the set of values of \(\omega ^ { 2 }\) for which the frame makes complete revolutions. At an instant when \(\theta = \frac { 1 } { 6 } \pi\), the force acting on the frame at \(A\) has magnitude \(F\).
  10. Given that \(\omega ^ { 2 } = \frac { 2 g } { a \sqrt { 3 } }\), find \(F\) in terms of \(m\) and \(g\). \section*{END OF QUESTION PAPER}
OCR MEI M4 2007 June Q3
24 marks Challenging +1.3
3
  1. Show, by integration, that the moment of inertia of a uniform rod of mass \(m\) and length \(2 a\) about an axis through its centre and perpendicular to the rod is \(\frac { 1 } { 3 } m a ^ { 2 }\). A pendulum of length 1 m is made by attaching a uniform sphere of mass 2 kg and radius 0.1 m to the end of a uniform rod AB of mass 1.2 kg and length 0.8 m , as shown in Fig. 3. The centre of the sphere is collinear with A and B . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8aab7e54-a204-481b-8f09-4bf4ca4e115d-3_442_291_717_886} \captionsetup{labelformat=empty} \caption{Fig. 3}
    \end{figure}
  2. Find the moment of inertia of the pendulum about an axis through A perpendicular to the rod. The pendulum can swing freely in a vertical plane about a fixed horizontal axis through A .
  3. The pendulum is held with AB at an angle \(\alpha\) to the downward vertical and released from rest. At time \(t , \mathrm { AB }\) is at an angle \(\theta\) to the vertical. Find an expression for \(\dot { \theta } ^ { 2 }\) in terms of \(\theta\) and \(\alpha\).
  4. Hence, or otherwise, show that, provided that \(\alpha\) is small, the pendulum performs simple harmonic motion. Calculate the period.
OCR MEI M4 2010 June Q3
24 marks Challenging +1.2
3 A uniform rod AB of mass \(m\) and length \(4 a\) is hinged at a fixed point C , where \(\mathrm { AC } = a\), and can rotate freely in a vertical plane. A light elastic string of natural length \(2 a\) and modulus \(\lambda\) is attached at one end to B and at the other end to a small light ring which slides on a fixed smooth horizontal rail which is in the same vertical plane as the rod. The rail is a vertical distance \(2 a\) above C . The string is always vertical. This system is shown in Fig. 3 with the rod inclined at \(\theta\) to the horizontal. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cb86219c-e0b1-4f75-b8b2-50b5a233aa54-2_387_613_1763_767} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Find an expression for \(V\), the potential energy of the system relative to C , and show that \(\frac { \mathrm { d } V } { \mathrm {~d} \theta } = a \cos \theta \left( \frac { 9 } { 2 } \lambda \sin \theta - m g \right)\).
  2. Determine the positions of equilibrium and the nature of their stability in the cases
    (A) \(\lambda > \frac { 2 } { 9 } m g\),
    (B) \(\lambda < \frac { 2 } { 9 } m g\),
    (C) \(\lambda = \frac { 2 } { 9 } m g\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{cb86219c-e0b1-4f75-b8b2-50b5a233aa54-3_522_755_342_696} \captionsetup{labelformat=empty} \caption{Fig. 4.1}
    \end{figure}
  3. Show, by integration, that the moment of inertia of the cone about its axis of symmetry is \(\frac { 3 } { 10 } M a ^ { 2 }\). [You may assume the standard formula for the moment of inertia of a uniform circular disc about its axis of symmetry and the formula \(V = \frac { 1 } { 3 } \pi r ^ { 2 } h\) for the volume of a cone.] A frustum is made by taking a uniform cone of base radius 0.1 m and height 0.2 m and removing a cone of height 0.1 m and base radius 0.05 m as shown in Fig. 4.2. The mass of the frustum is 2.8 kg . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{cb86219c-e0b1-4f75-b8b2-50b5a233aa54-3_391_517_1352_813} \captionsetup{labelformat=empty} \caption{Fig. 4.2}
    \end{figure} The frustum can rotate freely about its axis of symmetry which is fixed and vertical.
  4. Show that the moment of inertia of the frustum about its axis of symmetry is \(0.0093 \mathrm {~kg} \mathrm {~m} ^ { 2 }\). The frustum is accelerated from rest for \(t\) seconds by a couple of magnitude 0.05 N m about its axis of symmetry, until it is rotating at \(10 \mathrm { rad } \mathrm { s } ^ { - 1 }\).
  5. Calculate \(t\).
  6. Find the position of G , the centre of mass of the frustum. The frustum (rotating at \(10 \mathrm { rad } \mathrm { s } ^ { - 1 }\) ) then receives an impulse tangential to the circumference of the larger circular face. This reduces its angular speed to \(5 \mathrm { rad } \mathrm { s } ^ { - 1 }\).
  7. To reduce its angular speed further, a parallel impulse of the same magnitude is now applied tangentially in the horizontal plane through G at the curved surface of the frustum. Calculate the resulting angular speed.
OCR MEI M4 2014 June Q4
25 marks Challenging +1.2
4
  1. A pulley consists of a central cylinder of wood and an outer ring of steel. The density of the wood is \(700 \mathrm {~kg} \mathrm {~m} ^ { - 3 }\) and the density of the steel is \(7800 \mathrm {~kg} \mathrm {~m} ^ { - 3 }\). The pulley has a radius of 20 cm and is 10 cm thick (see Fig. 4.1). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c3ac9277-d34d-4d0e-9f9b-d0bce8c741af-4_359_661_404_742} \captionsetup{labelformat=empty} \caption{Fig. 4.1}
    \end{figure} Find the radius that the central cylinder must have in order that the moment of inertia of the pulley about the axis of symmetry shown in Fig. 4.1 is \(1.5 \mathrm {~kg} \mathrm {~m} ^ { 2 }\).
  2. Two blocks P and Q of masses 10 kg and 20 kg are connected by a light inextensible string. The string passes over a heavy rough pulley of radius 25 cm . The pulley can rotate freely and the string does not slip. Block P is held at rest in smooth contact with a plane inclined at \(30 ^ { \circ }\) to the horizontal, and block Q is at rest below the pulley (see Fig. 4.2). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c3ac9277-d34d-4d0e-9f9b-d0bce8c741af-5_341_917_438_541} \captionsetup{labelformat=empty} \caption{Fig. 4.2}
    \end{figure} At \(t \mathrm {~s}\) after the system is released from rest, the pulley has angular velocity \(\omega \mathrm { rad } \mathrm { s } ^ { - 1 }\) and block P has constant acceleration of \(2 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) up the slope.
    1. Show that the net loss of energy of the two blocks in the first \(t\) seconds of motion is \(87 t ^ { 2 } \mathrm {~J}\) and use the principle of conservation of energy to show that the moment of inertia of the pulley about its axis of rotation is \(\frac { 87 } { 32 } \mathrm {~kg} \mathrm {~m} ^ { 2 }\). When \(t = 3\) a resistive couple is applied to the pulley. This resistive couple has magnitude \(( 2 \omega + k ) \mathrm { Nm }\), where \(k\) is a constant. The couple on the pulley due to tensions in the sections of string is \(\left( \frac { 147 } { 4 } - \frac { 15 } { 8 } \frac { \mathrm {~d} \omega } { \mathrm {~d} t } \right) \mathrm { Nm }\) in the direction of positive \(\omega\).
    2. Write down a first order differential equation for \(\omega\) when \(t \geqslant 3\) and show by integration that $$\omega = \frac { 1 } { 8 } \left( ( 45 + 4 k ) \mathrm { e } ^ { \frac { 64 } { 147 } ( 3 - t ) } + 147 - 4 k \right) .$$
    3. By considering the equation given in part (ii), find the value or set of values of \(k\) for which the pulley
      (A) continues to rotate with constant angular velocity,
      (B) rotates with decreasing angular velocity without coming to rest,
      (C) rotates with decreasing angular velocity and comes to rest if there is sufficient distance between P and the pulley. \section*{END OF QUESTION PAPER}
Edexcel M5 Q6
12 marks Challenging +1.2
6. (a) Show by integration that the moment of inertia of a uniform disc, of mass \(m\) and radius \(a\), about an axis through the centre of disc and perpendicular to the plane of the disc is \(\frac { 1 } { 2 } m a ^ { 2 }\).
(3 marks) \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{4e874199-105a-460f-af7c-da0ef1603933-4_887_591_997_812}
\end{figure} A uniform rod \(A B\) has mass \(3 m\) and length \(2 a\). A uniform disc, of mass \(4 m\) and radius \(\frac { 1 } { 2 } a\), is attached to the rod with the centre of the disc lying on the rod a distance \(\frac { 3 } { 2 } a\) from \(A\). The rod lies in the plane of the disc, as shown in Fig. 1. The disc and rod together form a pendulum which is free to rotate about a fixed smooth horizontal axis \(L\) which passes through \(A\) and is perpendicular to the plane of the pendulum.
(b) Show that the moment of inertia of the pendulum about \(L\) is \(\frac { 27 } { 2 } m a ^ { 2 }\). The pendulum makes small oscillations about its position of stable equilibrium.
(c) Show that the motion of the pendulum is approximately simple harmonic, and find the period of the oscillations.
(6 marks)
OCR M4 2013 June Q5
14 marks Standard +0.8
  1. Find the magnitude and bearing of the velocity of \(U\) relative to \(P\).
  2. Find the shortest distance between \(P\) and \(U\) in the subsequent motion.
    (ii) Plane \(Q\) is flying with constant velocity \(160 \mathrm {~ms} ^ { - 1 }\) in the direction which brings it as close as possible to \(U\).
  3. Find the bearing of the direction in which \(Q\) is flying.
  4. Find the shortest distance between \(Q\) and \(U\) in the subsequent motion.
    \includegraphics[max width=\textwidth, alt={}, center]{6e3d5f5e-7ffa-4111-903d-468fb4d20192-3_771_769_262_646} A square frame \(A B C D\) consists of four uniform rods \(A B , B C , C D , D A\), rigidly joined at \(A , B , C , D\). Each rod has mass 0.6 kg and length 1.5 m . The frame rotates freely in a vertical plane about a fixed horizontal axis passing through the mid-point \(O\) of \(A D\). At time \(t\) seconds the angle between \(A D\) and the horizontal, measured anticlockwise, is \(\theta\) radians (see diagram).
    1. Show that the moment of inertia of the frame about the axis through \(O\) is \(3.15 \mathrm {~kg} \mathrm {~m} ^ { 2 }\).
    2. Show that \(\frac { \mathrm { d } ^ { 2 } \theta } { \mathrm {~d} t ^ { 2 } } = - 5.6 \sin \theta\).
    3. Deduce that the frame can make small oscillations which are approximately simple harmonic, and find the period of these oscillations. The frame is at rest with \(A D\) horizontal. A couple of constant moment 25 Nm about the axis is then applied to the frame.
    4. Find the angular speed of the frame when it has rotated through 1.2 radians.