CAIE FP2 2011 June — Question 11 EITHER

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2011
SessionJune
TopicMoments of inertia

\includegraphics[max width=\textwidth, alt={}]{e8a16ec8-b6b7-4b0c-b0c1-8f5f7a9e4fa6-5_511_508_392_817}
A rigid body is made from uniform wire of negligible thickness and is in the form of a square \(A B C D\) of mass \(M\) enclosed within a circular ring of radius \(a\) and mass \(2 M\). The centres of the square and the circle coincide at \(O\) and the corners of the square are joined to the circle (see diagram). Show that the moment of inertia of the body about an axis through \(O\), perpendicular to the plane of the body, is \(\frac { 8 } { 3 } M a ^ { 2 }\). Hence find the moment of inertia of the body about an axis \(l\), through \(A\), in the plane of the body and tangential to the circle. A particle \(P\) of mass \(M\) is now attached to the body at \(C\). The system is able to rotate freely about the fixed axis \(l\), which is horizontal. The system is released from rest with \(A C\) making an angle of \(60 ^ { \circ }\) with the upward vertical. Find, in terms of \(a\) and \(g\), the greatest speed of \(P\) in the subsequent motion.