OCR MEI M4 2014 June — Question 4

Exam BoardOCR MEI
ModuleM4 (Mechanics 4)
Year2014
SessionJune
TopicCentre of Mass 2

4
  1. A pulley consists of a central cylinder of wood and an outer ring of steel. The density of the wood is \(700 \mathrm {~kg} \mathrm {~m} ^ { - 3 }\) and the density of the steel is \(7800 \mathrm {~kg} \mathrm {~m} ^ { - 3 }\). The pulley has a radius of 20 cm and is 10 cm thick (see Fig. 4.1). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c3ac9277-d34d-4d0e-9f9b-d0bce8c741af-4_359_661_404_742} \captionsetup{labelformat=empty} \caption{Fig. 4.1}
    \end{figure} Find the radius that the central cylinder must have in order that the moment of inertia of the pulley about the axis of symmetry shown in Fig. 4.1 is \(1.5 \mathrm {~kg} \mathrm {~m} ^ { 2 }\).
  2. Two blocks P and Q of masses 10 kg and 20 kg are connected by a light inextensible string. The string passes over a heavy rough pulley of radius 25 cm . The pulley can rotate freely and the string does not slip. Block P is held at rest in smooth contact with a plane inclined at \(30 ^ { \circ }\) to the horizontal, and block Q is at rest below the pulley (see Fig. 4.2). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c3ac9277-d34d-4d0e-9f9b-d0bce8c741af-5_341_917_438_541} \captionsetup{labelformat=empty} \caption{Fig. 4.2}
    \end{figure} At \(t \mathrm {~s}\) after the system is released from rest, the pulley has angular velocity \(\omega \mathrm { rad } \mathrm { s } ^ { - 1 }\) and block P has constant acceleration of \(2 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) up the slope.
    1. Show that the net loss of energy of the two blocks in the first \(t\) seconds of motion is \(87 t ^ { 2 } \mathrm {~J}\) and use the principle of conservation of energy to show that the moment of inertia of the pulley about its axis of rotation is \(\frac { 87 } { 32 } \mathrm {~kg} \mathrm {~m} ^ { 2 }\). When \(t = 3\) a resistive couple is applied to the pulley. This resistive couple has magnitude \(( 2 \omega + k ) \mathrm { Nm }\), where \(k\) is a constant. The couple on the pulley due to tensions in the sections of string is \(\left( \frac { 147 } { 4 } - \frac { 15 } { 8 } \frac { \mathrm {~d} \omega } { \mathrm {~d} t } \right) \mathrm { Nm }\) in the direction of positive \(\omega\).
    2. Write down a first order differential equation for \(\omega\) when \(t \geqslant 3\) and show by integration that $$\omega = \frac { 1 } { 8 } \left( ( 45 + 4 k ) \mathrm { e } ^ { \frac { 64 } { 147 } ( 3 - t ) } + 147 - 4 k \right) .$$
    3. By considering the equation given in part (ii), find the value or set of values of \(k\) for which the pulley
      (A) continues to rotate with constant angular velocity,
      (B) rotates with decreasing angular velocity without coming to rest,
      (C) rotates with decreasing angular velocity and comes to rest if there is sufficient distance between P and the pulley. \section*{END OF QUESTION PAPER}