A pulley consists of a central cylinder of wood and an outer ring of steel. The density of the wood is \(700 \mathrm {~kg} \mathrm {~m} ^ { - 3 }\) and the density of the steel is \(7800 \mathrm {~kg} \mathrm {~m} ^ { - 3 }\). The pulley has a radius of 20 cm and is 10 cm thick (see Fig. 4.1).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c3ac9277-d34d-4d0e-9f9b-d0bce8c741af-4_359_661_404_742}
\captionsetup{labelformat=empty}
\caption{Fig. 4.1}
\end{figure}
Find the radius that the central cylinder must have in order that the moment of inertia of the pulley about the axis of symmetry shown in Fig. 4.1 is \(1.5 \mathrm {~kg} \mathrm {~m} ^ { 2 }\).