CAIE FP2 2016 November — Question 10 EITHER

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2016
SessionNovember
TopicMoments

\includegraphics[max width=\textwidth, alt={}]{58728f93-bfdb-4f76-a9b9-3a1d1592bfc9-6_515_625_411_758}
A thin uniform rod \(A B\) has mass \(2 m\) and length \(3 a\). Two identical uniform discs each have mass \(\frac { 1 } { 2 } m\) and radius \(a\). The centre of one of the discs is rigidly attached to the end \(A\) of the rod and the centre of the other disc is rigidly attached to the end \(B\) of the rod. The plane of each disc is perpendicular to the rod \(A B\). A second thin uniform rod \(O C\) has mass \(m\) and length \(2 a\). The end \(C\) of this rod is rigidly attached to the mid-point of \(A B\), with \(O C\) perpendicular to \(A B\) (see diagram). The object consisting of the two discs and two rods is free to rotate about a horizontal axis \(l\), through \(O\), which is perpendicular to both rods.
  1. Show that the moment of inertia of one of the discs about \(l\) is \(\frac { 13 } { 4 } m a ^ { 2 }\).
  2. Show that the moment of inertia of the object about \(l\) is \(\frac { 52 } { 3 } m a ^ { 2 }\). When the object is suspended from \(O\) and is hanging in equilibrium, the point \(C\) is given a speed of \(\sqrt { } ( 2 a g )\) in the direction parallel to \(A B\). In the subsequent motion, the angle through which \(O C\) has turned before the object comes to instantaneous rest is \(\theta\).
  3. Show that \(\cos \theta = \frac { 8 } { 21 }\).