| Exam Board | Edexcel |
| Module | C4 (Core Mathematics 4) |
| Year | 2009 |
| Session | January |
| Topic | Integration by Parts |
6. (a) Find \(\int \tan ^ { 2 } x \mathrm {~d} x\).
(b) Use integration by parts to find \(\int \frac { 1 } { x ^ { 3 } } \ln x \mathrm {~d} x\).
(c) Use the substitution \(u = 1 + e ^ { x }\) to show that
$$\int \frac { \mathrm { e } ^ { 3 x } } { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x = \frac { 1 } { 2 } \mathrm { e } ^ { 2 x } - \mathrm { e } ^ { x } + \ln \left( 1 + \mathrm { e } ^ { x } \right) + k$$
where \(k\) is a constant.