Edexcel P4 2022 October — Question 7

Exam BoardEdexcel
ModuleP4 (Pure Mathematics 4)
Year2022
SessionOctober
TopicIntegration by Parts

  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Use the substitution \(u = \mathrm { e } ^ { x } - 3\) to show that $$\int _ { \ln 5 } ^ { \ln 7 } \frac { 4 \mathrm { e } ^ { 3 x } } { \mathrm { e } ^ { x } - 3 } \mathrm {~d} x = a + b \ln 2$$ where \(a\) and \(b\) are constants to be found.
  2. Show, by integration, that $$\int 3 \mathrm { e } ^ { x } \cos 2 x \mathrm {~d} x = p \mathrm { e } ^ { x } \sin 2 x + q \mathrm { e } ^ { x } \cos 2 x + c$$ where \(p\) and \(q\) are constants to be found and \(c\) is an arbitrary constant.