Edexcel P4 2023 June — Question 5

Exam BoardEdexcel
ModuleP4 (Pure Mathematics 4)
Year2023
SessionJune
TopicIntegration by Parts

  1. (i) Find
$$\int x ^ { 2 } \mathrm { e } ^ { x } \mathrm {~d} x$$ (4)
(ii) Use the substitution \(u = \sqrt { 1 - 3 x }\) to show that $$\int \frac { 27 x } { \sqrt { 1 - 3 x } } \mathrm {~d} x = - 2 ( 1 - 3 x ) ^ { \frac { 1 } { 2 } } ( A x + B ) + k$$ where \(A\) and \(B\) are integers to be found and \(k\) is an arbitrary constant.