AQA Paper 3 Specimen — Question 3 16 marks

Exam BoardAQA
ModulePaper 3 (Paper 3)
SessionSpecimen
Marks16
TopicIntegration by Parts

3 A circular ornamental garden pond, of radius 2 metres, has weed starting to grow and cover its surface. As the weed grows, it covers an area of \(A\) square metres. A simple model assumes that the weed grows so that the rate of increase of its area is proportional to \(A\). 3
  1. Show that the area covered by the weed can be modelled by
    where \(B\) and \(k\) are constants and \(t\) is time in days since the weed was first noticed.
    [0pt] [4 marks] $$A = B \mathrm { e } ^ { k t }$$ 3
  2. When it was first noticed, the weed covered an area of \(0.25 \mathrm {~m} ^ { 2 }\). Twenty days later the weed covered an area of \(0.5 \mathrm {~m} ^ { 2 }\) 3
    1. State the value of \(B\).
      [0pt] [1 mark] 3
  3. (ii) Show that the model for the area covered by the weed can be written as $$A = 2 ^ { \frac { t } { 20 } - 2 }$$ [4 marks]
    Question 3 continues on the next page 3
  4. (iii) How many days does it take for the weed to cover half of the surface of the pond?
    [0pt] [2 marks]
    3
  5. State one limitation of the model.
    3
  6. Suggest one refinement that could be made to improve the model.
    \(4 \quad \int _ { 1 } ^ { 2 } x ^ { 3 } \ln ( 2 x ) \mathrm { d } x\) can be written in the form \(p \ln 2 + q\), where \(p\) and \(q\) are rational numbers. Find \(p\) and \(q\).
    [0pt] [5 marks]