| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2013 |
| Session | January |
| Topic | Proof by induction |
8. (a) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$\sum _ { r = 1 } ^ { n } r ( r + 3 ) = \frac { 1 } { 3 } n ( n + 1 ) ( n + 5 )$$
(b) A sequence of positive integers is defined by
$$\begin{aligned}
u _ { 1 } & = 1
u _ { n + 1 } & = u _ { n } + n ( 3 n + 1 ) , \quad n \in \mathbb { Z } ^ { + }
\end{aligned}$$
Prove by induction that
$$u _ { n } = n ^ { 2 } ( n - 1 ) + 1 , \quad n \in \mathbb { Z } ^ { + }$$