Edexcel FP1 2013 January — Question 8

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2013
SessionJanuary
TopicProof by induction

8. (a) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\), $$\sum _ { r = 1 } ^ { n } r ( r + 3 ) = \frac { 1 } { 3 } n ( n + 1 ) ( n + 5 )$$ (b) A sequence of positive integers is defined by $$\begin{aligned} u _ { 1 } & = 1
u _ { n + 1 } & = u _ { n } + n ( 3 n + 1 ) , \quad n \in \mathbb { Z } ^ { + } \end{aligned}$$ Prove by induction that $$u _ { n } = n ^ { 2 } ( n - 1 ) + 1 , \quad n \in \mathbb { Z } ^ { + }$$