Prove recurrence relation formula

A question is this type if and only if it asks to prove by induction that a sequence defined by a recurrence relation (uₙ₊₁ in terms of uₙ) equals a given explicit formula for uₙ.

37 questions · Standard +0.5

Sort by: Default | Easiest first | Hardest first
OCR MEI FP1 2015 June Q6
6 marks Standard +0.3
6 A sequence is defined by \(u _ { 1 } = 3\) and \(u _ { n + 1 } = 3 u _ { n } - 5\). Prove by induction that \(u _ { n } = \frac { 3 ^ { n - 1 } + 5 } { 2 }\). Section B (36 marks)
OCR MEI FP1 2016 June Q6
6 marks Standard +0.8
6 A sequence is defined by \(u _ { 1 } = 8\) and \(u _ { n + 1 } = 3 u _ { n } + 2 n + 5\). Prove by induction that \(u _ { n } = 4 \left( 3 ^ { n } \right) - n - 3\).
CAIE FP1 2012 June Q2
5 marks Standard +0.3
2 For the sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\), it is given that \(u _ { 1 } = 1\) and \(u _ { r + 1 } = \frac { 3 u _ { r } - 2 } { 4 }\) for all \(r\). Prove by mathematical induction that \(u _ { n } = 4 \left( \frac { 3 } { 4 } \right) ^ { n } - 2\), for all positive integers \(n\).
CAIE FP1 2018 June Q9
10 marks Standard +0.8
9 For the sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\), it is given that \(u _ { 1 } = 8\) and $$u _ { r + 1 } = \frac { 5 u _ { r } - 3 } { 4 }$$ for all \(r\).
  1. Prove by mathematical induction that $$u _ { n } = 4 \left( \frac { 5 } { 4 } \right) ^ { n } + 3$$ for all positive integers \(n\).
  2. Deduce the set of values of \(x\) for which the infinite series $$\left( u _ { 1 } - 3 \right) x + \left( u _ { 2 } - 3 \right) x ^ { 2 } + \ldots + \left( u _ { r } - 3 \right) x ^ { r } + \ldots$$ is convergent.
  3. Use the result given in part (i) to find surds \(a\) and \(b\) such that $$\sum _ { n = 1 } ^ { N } \ln \left( u _ { n } - 3 \right) = N ^ { 2 } \ln a + N \ln b .$$
OCR Further Additional Pure 2022 June Q3
6 marks Challenging +1.2
3 The irrational number \(\phi = \frac { 1 } { 2 } ( 1 + \sqrt { 5 } )\) plays a significant role in the sequence of Fibonacci numbers given by \(\mathrm { F } _ { 0 } = 0 , \mathrm {~F} _ { 1 } = 1\) and \(\mathrm { F } _ { \mathrm { n } + 1 } = \mathrm { F } _ { \mathrm { n } } + \mathrm { F } _ { \mathrm { n } - 1 }\) for \(n \geqslant 1\). Prove by induction that, for each positive integer \(n , \phi ^ { n } = \mathrm { F } _ { \mathrm { n } } \times \phi + \mathrm { F } _ { \mathrm { n } - 1 }\).
AQA FP2 2010 January Q7
8 marks Standard +0.8
7 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 2 , \quad u _ { k + 1 } = 2 u _ { k } + 1$$
  1. Prove by induction that, for all \(n \geqslant 1\), $$u _ { n } = 3 \times 2 ^ { n - 1 } - 1$$
  2. Show that $$\sum _ { r = 1 } ^ { n } u _ { r } = u _ { n + 1 } - ( n + 2 )$$
AQA FP2 2012 January Q4
6 marks Standard +0.8
4 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = \frac { 3 } { 4 } \quad u _ { n + 1 } = \frac { 3 } { 4 - u _ { n } }$$ Prove by induction that, for all \(n \geqslant 1\), $$u _ { n } = \frac { 3 ^ { n + 1 } - 3 } { 3 ^ { n + 1 } - 1 }$$
AQA FP2 2013 June Q3
6 marks Standard +0.8
3 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 2 , \quad u _ { n + 1 } = \frac { 5 u _ { n } - 3 } { 3 u _ { n } - 1 }$$ Prove by induction that, for all integers \(n \geqslant 1\), $$u _ { n } = \frac { 3 n + 1 } { 3 n - 1 }$$ (6 marks)
OCR MEI Further Pure Core AS 2020 November Q5
6 marks Standard +0.3
5 You are given that \(u _ { 1 } = 5\) and \(u _ { n + 1 } = u _ { n } + 2 n + 4\).
Prove by induction that \(u _ { n } = n ^ { 2 } + 3 n + 1\) for all positive integers \(n\).
OCR Further Pure Core 1 2018 September Q3
5 marks Standard +0.3
3 A sequence is defined by \(a _ { 1 } = 6\) and \(a _ { n + 1 } = 5 a _ { n } - 2\) for \(n \geqslant 1\).
Prove by induction that for all integers \(n \geqslant 1 , a _ { n } = \frac { 11 \times 5 ^ { n - 1 } + 1 } { 2 }\).
AQA Further Paper 1 2024 June Q6
4 marks Standard +0.3
6 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$\begin{aligned} u _ { 1 } & = 1 \\ u _ { n + 1 } & = u _ { n } + 3 n \end{aligned}$$ Prove by induction that for all integers \(n \geq 1\) $$u _ { n } = \frac { 3 } { 2 } n ^ { 2 } - \frac { 3 } { 2 } n + 1$$
AQA Further Paper 2 2020 June Q10
6 marks Standard +0.8
10 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 0 \quad u _ { n + 1 } = \frac { 5 } { 6 - u _ { n } }$$ Prove by induction that, for all integers \(n \geq 1\), $$u _ { n } = \frac { 5 ^ { n } - 5 } { 5 ^ { n } - 1 }$$