CAIE
FP1
2012
June
Q2
5 marks
Standard +0.3
2 For the sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\), it is given that \(u _ { 1 } = 1\) and \(u _ { r + 1 } = \frac { 3 u _ { r } - 2 } { 4 }\) for all \(r\). Prove by mathematical induction that \(u _ { n } = 4 \left( \frac { 3 } { 4 } \right) ^ { n } - 2\), for all positive integers \(n\).
OCR
Further Additional Pure
2022
June
Q3
6 marks
Challenging +1.2
3 The irrational number \(\phi = \frac { 1 } { 2 } ( 1 + \sqrt { 5 } )\) plays a significant role in the sequence of Fibonacci numbers given by \(\mathrm { F } _ { 0 } = 0 , \mathrm {~F} _ { 1 } = 1\) and \(\mathrm { F } _ { \mathrm { n } + 1 } = \mathrm { F } _ { \mathrm { n } } + \mathrm { F } _ { \mathrm { n } - 1 }\) for \(n \geqslant 1\).
Prove by induction that, for each positive integer \(n , \phi ^ { n } = \mathrm { F } _ { \mathrm { n } } \times \phi + \mathrm { F } _ { \mathrm { n } - 1 }\).
AQA
FP2
2012
January
Q4
6 marks
Standard +0.8
4 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$u _ { 1 } = \frac { 3 } { 4 } \quad u _ { n + 1 } = \frac { 3 } { 4 - u _ { n } }$$
Prove by induction that, for all \(n \geqslant 1\),
$$u _ { n } = \frac { 3 ^ { n + 1 } - 3 } { 3 ^ { n + 1 } - 1 }$$
AQA
FP2
2013
June
Q3
6 marks
Standard +0.8
3 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$u _ { 1 } = 2 , \quad u _ { n + 1 } = \frac { 5 u _ { n } - 3 } { 3 u _ { n } - 1 }$$
Prove by induction that, for all integers \(n \geqslant 1\),
$$u _ { n } = \frac { 3 n + 1 } { 3 n - 1 }$$
(6 marks)
AQA
Further Paper 1
2024
June
Q6
4 marks
Standard +0.3
6 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$\begin{aligned}
u _ { 1 } & = 1 \\
u _ { n + 1 } & = u _ { n } + 3 n
\end{aligned}$$
Prove by induction that for all integers \(n \geq 1\)
$$u _ { n } = \frac { 3 } { 2 } n ^ { 2 } - \frac { 3 } { 2 } n + 1$$
AQA
Further Paper 2
2020
June
Q10
6 marks
Standard +0.8
10 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$u _ { 1 } = 0 \quad u _ { n + 1 } = \frac { 5 } { 6 - u _ { n } }$$
Prove by induction that, for all integers \(n \geq 1\),
$$u _ { n } = \frac { 5 ^ { n } - 5 } { 5 ^ { n } - 1 }$$