9. (a) A sequence of numbers is defined by
$$u _ { 1 } = 3 \text { and } u _ { n + 1 } = 3 u _ { n } + 4 \text { for } n \geqslant 1 .$$
Prove by induction that
$$u _ { n } = 3 ^ { n } + 2 \left( 3 ^ { n - 1 } - 1 \right) \text { for } n \in \mathbb { Z } ^ { + } \text {. }$$
(b)
$$\mathbf { A } = \left( \begin{array} { l l }
4 & 0
9 & 1
\end{array} \right)$$
- Prove by induction that
$$\mathbf { A } ^ { n } = \left( \begin{array} { c c }
4 ^ { n } & 0
3 \left( 4 ^ { n } - 1 \right) & 1
\end{array} \right) \text { for } n \in \mathbb { Z } ^ { + } .$$ - Determine whether the result \(\mathbf { A } ^ { n } = \left( \begin{array} { c c } 4 ^ { n } & 0
3 \left( 4 ^ { n } - 1 \right) & 1 \end{array} \right)\) is also valid for \(n = - 1\).