| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2013 |
| Session | June |
| Topic | Proof by induction |
9. (a) A sequence of numbers is defined by
$$\begin{aligned}
& u _ { 1 } = 8
& u _ { n + 1 } = 4 u _ { n } - 9 n , \quad n \geqslant 1
\end{aligned}$$
Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$u _ { n } = 4 ^ { n } + 3 n + 1$$
(b) Prove by induction that, for \(m \in \mathbb { Z } ^ { + }\),
$$\left( \begin{array} { l l }
3 & - 4
1 & - 1
\end{array} \right) ^ { m } = \left( \begin{array} { c c }
2 m + 1 & - 4 m
m & 1 - 2 m
\end{array} \right)$$