CAIE FP1 2009 November — Question 10

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2009
SessionNovember
TopicPolar coordinates

10 The curve \(C\) has polar equation $$r = a \sin 3 \theta$$ where \(0 \leqslant \theta \leqslant \frac { 1 } { 3 } \pi\).
  1. Show that the area of the region enclosed by \(C\) is \(\frac { 1 } { 12 } \pi a ^ { 2 }\).
  2. Show that, at the point of \(C\) at maximum distance from the initial line, $$\tan 3 \theta + 3 \tan \theta = 0 .$$
  3. Use the formula $$\tan 3 \theta = \frac { 3 \tan \theta - \tan ^ { 3 } \theta } { 1 - 3 \tan ^ { 2 } \theta }$$ to find this maximum distance.
  4. Draw a sketch of \(C\).