CAIE FP1 2009 November — Question 8

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2009
SessionNovember
TopicIntegration by Substitution

8
  1. The curve \(C _ { 1 }\) has equation \(y = - \ln ( \cos x )\). Show that the length of the arc of \(C _ { 1 }\) from the point where \(x = 0\) to the point where \(x = \frac { 1 } { 3 } \pi\) is \(\ln ( 2 + \sqrt { 3 } )\).
  2. The curve \(C _ { 2 }\) has equation \(y = 2 \sqrt { } ( x + 3 )\). The arc of \(C _ { 2 }\) joining the point where \(x = 0\) to the point where \(x = 1\) is rotated through one complete revolution about the \(x\)-axis. Show that the area of the surface generated is $$\frac { 8 } { 3 } \pi ( 5 \sqrt { } 5 - 8 )$$