CAIE FP1 (Further Pure Mathematics 1) 2009 November

Question 1
View details
1 Given that $$y = x ^ { 2 } \sin x$$
  1. show that the mean value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\) is \(\frac { 1 } { 2 } \pi\),
  2. find the mean value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
Question 2
View details
2 Relative to an origin \(O\), the points \(A , B , C\) have position vectors $$\mathbf { i } , \quad \mathbf { j } + \mathbf { k } , \quad \mathbf { i } + \mathbf { j } + \theta \mathbf { k }$$ respectively. The shortest distance between the lines \(A B\) and \(O C\) is \(\frac { 1 } { \sqrt { 2 } }\). Find the value of \(\theta\).
Question 3
View details
3 The curve \(C\) has equation $$y = \frac { x ^ { 2 } - 5 x + 4 } { x + 1 }$$
  1. Obtain the coordinates of the points of intersection of \(C\) with the axes.
  2. Obtain the equation of each of the asymptotes of \(C\).
  3. Draw a sketch of \(C\).
Question 4
View details
4 It is given that $$x = t + \sin t , \quad y = t ^ { 2 } + 2 \cos t$$ where \(- \pi < t < \pi\). Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\). Show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { 2 t \sin t } { ( 1 + \cos t ) ^ { 3 } }$$ Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) increases with \(x\) over the given interval of \(t\).
Question 5
View details
5 The equation $$x ^ { 3 } + 5 x + 3 = 0$$ has roots \(\alpha , \beta , \gamma\). Use the substitution \(x = - \frac { 3 } { y }\) to find a cubic equation in \(y\) and show that the roots of this equation are \(\beta \gamma , \gamma \alpha , \alpha \beta\). Find the exact values of \(\beta ^ { 2 } \gamma ^ { 2 } + \gamma ^ { 2 } \alpha ^ { 2 } + \alpha ^ { 2 } \beta ^ { 2 }\) and \(\beta ^ { 3 } \gamma ^ { 3 } + \gamma ^ { 3 } \alpha ^ { 3 } + \alpha ^ { 3 } \beta ^ { 3 }\).
Question 6
View details
6 Show that $$\frac { \mathrm { d } } { \mathrm {~d} x } \left[ x ^ { n - 1 } \sqrt { } \left( 4 - x ^ { 2 } \right) \right] = \frac { 4 ( n - 1 ) x ^ { n - 2 } } { \sqrt { } \left( 4 - x ^ { 2 } \right) } - \frac { n x ^ { n } } { \sqrt { } \left( 4 - x ^ { 2 } \right) }$$ Let $$I _ { n } = \int _ { 0 } ^ { 1 } \frac { x ^ { n } } { \sqrt { } \left( 4 - x ^ { 2 } \right) } \mathrm { d } x$$ where \(n \geqslant 0\). Prove that $$n I _ { n } = 4 ( n - 1 ) I _ { n - 2 } - \sqrt { } 3$$ for \(n \geq 2\). Given that \(I _ { 0 } = \frac { 1 } { 6 } \pi\), find \(I _ { 4 }\), leaving your answer in an exact form.
Question 7
View details
7 Use de Moivre's theorem to express \(\sin ^ { 6 } \theta\) in the form $$a + b \cos 2 \theta + c \cos 4 \theta + d \cos 6 \theta$$ where \(a , b , c , d\) are constants to be found. Hence evaluate $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 6 } 2 x d x$$ leaving your answer in terms of \(\pi\).
Question 8
View details
8
  1. The curve \(C _ { 1 }\) has equation \(y = - \ln ( \cos x )\). Show that the length of the arc of \(C _ { 1 }\) from the point where \(x = 0\) to the point where \(x = \frac { 1 } { 3 } \pi\) is \(\ln ( 2 + \sqrt { 3 } )\).
  2. The curve \(C _ { 2 }\) has equation \(y = 2 \sqrt { } ( x + 3 )\). The arc of \(C _ { 2 }\) joining the point where \(x = 0\) to the point where \(x = 1\) is rotated through one complete revolution about the \(x\)-axis. Show that the area of the surface generated is $$\frac { 8 } { 3 } \pi ( 5 \sqrt { } 5 - 8 )$$
Question 9
View details
9 Show that if \(y\) depends on \(x\) and \(x = \mathrm { e } ^ { u }\) then $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} u ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} u } .$$ Given that \(y\) satisfies the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 3 y = 30 x ^ { 2 }$$ use the substitution \(x = \mathrm { e } ^ { u }\) to show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} u ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} u } + 3 y = 30 \mathrm { e } ^ { 2 u }$$ Hence find the general solution for \(y\) in terms of \(x\).
Question 10
View details
10 The curve \(C\) has polar equation $$r = a \sin 3 \theta$$ where \(0 \leqslant \theta \leqslant \frac { 1 } { 3 } \pi\).
  1. Show that the area of the region enclosed by \(C\) is \(\frac { 1 } { 12 } \pi a ^ { 2 }\).
  2. Show that, at the point of \(C\) at maximum distance from the initial line, $$\tan 3 \theta + 3 \tan \theta = 0 .$$
  3. Use the formula $$\tan 3 \theta = \frac { 3 \tan \theta - \tan ^ { 3 } \theta } { 1 - 3 \tan ^ { 2 } \theta }$$ to find this maximum distance.
  4. Draw a sketch of \(C\).
Question 11 EITHER
View details
Prove by induction that $$\sum _ { n = 1 } ^ { N } n ^ { 3 } = \frac { 1 } { 4 } N ^ { 2 } ( N + 1 ) ^ { 2 }$$ Use this result, together with the formula for \(\sum _ { n = 1 } ^ { N } n ^ { 2 }\), to show that $$\sum _ { n = 1 } ^ { N } \left( 20 n ^ { 3 } + 36 n ^ { 2 } \right) = N ( N + 1 ) ( N + 3 ) ( 5 N + 2 ) .$$ Let $$S _ { N } = \sum _ { n = 1 } ^ { N } \left( 20 n ^ { 3 } + 36 n ^ { 2 } + \mu n \right)$$ Find the value of the constant \(\mu\) such that \(S _ { N }\) is of the form \(N ^ { 2 } ( N + 1 ) ( a N + b )\), where the constants \(a\) and \(b\) are to be determined. Show that, for this value of \(\mu\), $$5 + \frac { 22 } { N } < N ^ { - 4 } S _ { N } < 5 + \frac { 23 } { N }$$ for all \(N \geqslant 18\).
Question 11 OR
View details
One of the eigenvalues of the matrix $$\mathbf { A } = \left( \begin{array} { r r r } 1 & - 4 & 6
2 & - 4 & 2
- 3 & 4 & a \end{array} \right)$$ is - 2 . Find the value of \(a\). Another eigenvalue of \(\mathbf { A }\) is - 5 . Find eigenvectors \(\mathbf { e } _ { 1 }\) and \(\mathbf { e } _ { 2 }\) corresponding to the eigenvalues - 2 and - 5 respectively. The linear space spanned by \(\mathbf { e } _ { 1 }\) and \(\mathbf { e } _ { 2 }\) is denoted by \(V\).
  1. Prove that, for any vector \(\mathbf { x }\) belonging to \(V\), the vector \(\mathbf { A x }\) also belongs to \(V\).
  2. Find a non-zero vector which is perpendicular to every vector in \(V\), and determine whether it is an eigenvector of \(\mathbf { A }\).