| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2009 |
| Session | November |
| Topic | Parametric equations |
4 It is given that
$$x = t + \sin t , \quad y = t ^ { 2 } + 2 \cos t$$
where \(- \pi < t < \pi\). Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
Show that
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { 2 t \sin t } { ( 1 + \cos t ) ^ { 3 } }$$
Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) increases with \(x\) over the given interval of \(t\).