CAIE FP1 2009 November — Question 9

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2009
SessionNovember
TopicSecond order differential equations

9 Show that if \(y\) depends on \(x\) and \(x = \mathrm { e } ^ { u }\) then $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} u ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} u } .$$ Given that \(y\) satisfies the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 3 y = 30 x ^ { 2 }$$ use the substitution \(x = \mathrm { e } ^ { u }\) to show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} u ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} u } + 3 y = 30 \mathrm { e } ^ { 2 u }$$ Hence find the general solution for \(y\) in terms of \(x\).