| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2009 |
| Session | November |
| Topic | Second order differential equations |
9 Show that if \(y\) depends on \(x\) and \(x = \mathrm { e } ^ { u }\) then
$$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} u ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} u } .$$
Given that \(y\) satisfies the differential equation
$$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 3 y = 30 x ^ { 2 }$$
use the substitution \(x = \mathrm { e } ^ { u }\) to show that
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} u ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} u } + 3 y = 30 \mathrm { e } ^ { 2 u }$$
Hence find the general solution for \(y\) in terms of \(x\).