| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2009 |
| Session | November |
| Topic | Roots of polynomials |
5 The equation
$$x ^ { 3 } + 5 x + 3 = 0$$
has roots \(\alpha , \beta , \gamma\). Use the substitution \(x = - \frac { 3 } { y }\) to find a cubic equation in \(y\) and show that the roots of this equation are \(\beta \gamma , \gamma \alpha , \alpha \beta\).
Find the exact values of \(\beta ^ { 2 } \gamma ^ { 2 } + \gamma ^ { 2 } \alpha ^ { 2 } + \alpha ^ { 2 } \beta ^ { 2 }\) and \(\beta ^ { 3 } \gamma ^ { 3 } + \gamma ^ { 3 } \alpha ^ { 3 } + \alpha ^ { 3 } \beta ^ { 3 }\).