Find second derivative

Differentiate an expression twice to find d²y/dx² and use it for concavity analysis.

31 questions

Edexcel C1 2014 January Q2
2. $$y = 2 x ^ { 2 } - \frac { 4 } { \sqrt { } x } + 1 , \quad x > 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving each term in its simplest form.
  2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), giving each term in its simplest form.
    \includegraphics[max width=\textwidth, alt={}, center]{6081d81b-51d2-4140-9834-71ef7fd700b0-05_104_97_2613_1784}
Edexcel C1 2012 June Q4
4. $$y = 5 x ^ { 3 } - 6 x ^ { \frac { 4 } { 3 } } + 2 x - 3$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) giving each term in its simplest form.
  2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
Edexcel C1 Q10
10. For the curve \(C\) with equation \(y = \mathrm { f } ( x )\), \(\frac { d y } { d x } = x ^ { 3 } + 2 x - 7 .\)
  1. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    (2)
  2. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } \geq 2\) for all values of \(x\).
    (1)
    Given that the point \(P ( 2,4 )\) lies on \(C\),
  3. find \(y\) in terms of \(x\),
    (5)
  4. find an equation for the normal to \(C\) at \(P\) in the form \(a x + b y + c = 0\), where \(a\), \(b\) and \(c\) are integers.
    (5)
    \end{tabular} & Leave blank
    \hline \end{tabular} \end{center}
    1. continued
Edexcel C2 2007 January Q1
1. $$f ( x ) = x ^ { 3 } + 3 x ^ { 2 } + 5$$ Find
  1. \(\mathrm { f } ^ { \prime \prime } ( x )\),
  2. \(\int _ { 1 } ^ { 2 } \mathrm { f } ( x ) \mathrm { d } x\).
OCR C1 2006 January Q3
3 Given that \(y = 3 x ^ { 5 } - \sqrt { x } + 15\), find
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
OCR C1 Q7
  1. Given that
$$y = \sqrt { x } - \frac { 4 } { \sqrt { x } }$$
  1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\),
  3. show that $$4 x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x } - y = 0 .$$
OCR MEI C2 2006 January Q6
6 A curve has gradient given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = x ^ { 2 } - 6 x + 9\). Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
Show that the curve has a stationary point of inflection when \(x = 3\).
OCR MEI C2 2006 June Q8
8 Given that \(y = 6 x ^ { 3 } + \sqrt { x } + 3\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
OCR MEI C2 2007 June Q2
2 Given that \(y = 6 x ^ { \frac { 3 } { 2 } }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
Show, without using a calculator, that when \(x = 36\) the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) is \(\frac { 3 } { 4 }\).
OCR MEI C2 Q10
10 Given tha \(y = 6 x ^ { \frac { 3 } { 2 } }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
Show, without using a calculator, that when \(x = 36\) the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) is \(\frac { 3 } { 4 }\).
OCR MEI C2 Q12
12 Given tha \(y = 6 x ^ { 3 } + \sqrt { x } + 3\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
OCR C1 2014 June Q6
6 Given that \(y = 6 x ^ { 3 } + \frac { 4 } { \sqrt { x } } + 5 x\), find
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    \(7 \quad A\) is the point \(( 5,7 )\) and \(B\) is the point \(( - 1 , - 5 )\).
  3. Find the coordinates of the mid-point of the line segment \(A B\).
  4. Find an equation of the line through \(A\) that is perpendicular to the line segment \(A B\), giving your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers.
OCR H240/02 Q2
2 A curve has equation \(y = x ^ { 5 } - 5 x ^ { 4 }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  2. Verify that the curve has a stationary point when \(x = 4\).
  3. Determine the nature of this stationary point.
Edexcel Paper 1 Specimen Q1
  1. The curve \(C\) has equation
$$y = 3 x ^ { 4 } - 8 x ^ { 3 } - 3$$
  1. Find (i) \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
    (ii) \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
  2. Verify that \(C\) has a stationary point when \(x = 2\)
  3. Determine the nature of this stationary point, giving a reason for your answer.
Edexcel Paper 2 2021 October Q5
  1. The curve \(C\) has equation
$$y = 5 x ^ { 4 } - 24 x ^ { 3 } + 42 x ^ { 2 } - 32 x + 11 \quad x \in \mathbb { R }$$
  1. Find
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
    2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
    1. Verify that \(C\) has a stationary point at \(x = 1\)
    2. Show that this stationary point is a point of inflection, giving reasons for your answer.
OCR MEI AS Paper 1 2020 November Q7
7 In this question you must show detailed reasoning.
A curve has equation \(y = 4 x ^ { 3 } - 6 x ^ { 2 } - 9 x + 4\).
  1. Sketch the gradient function for this curve, clearly indicating the points where the gradient is zero.
  2. Find the set of values of \(x\) for which the gradient function is decreasing. Give your answer using set notation.
OCR MEI Paper 3 Specimen Q6
6 Fig. 6 shows the curve with equation \(y = x ^ { 4 } - 6 x ^ { 2 } + 4 x + 5\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b4e10fd2-4144-4019-bf00-070f93a2b05d-06_869_750_370_242} \captionsetup{labelformat=empty} \caption{Fig. 6
Find the coordinates of the points of inflection.}
\end{figure}
AQA C1 2016 June Q8
8 The gradient, \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), at the point \(( x , y )\) on a curve is given by $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 54 + 27 x - 6 x ^ { 2 }$$
    1. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    2. The curve passes through the point \(P \left( - 1 \frac { 1 } { 2 } , 4 \right)\). Verify that the curve has a minimum point at \(P\).
    1. Show that at the points on the curve where \(y\) is decreasing $$2 x ^ { 2 } - 9 x - 18 > 0$$
    2. Solve the inequality \(2 x ^ { 2 } - 9 x - 18 > 0\).
AQA C2 2015 June Q4
4 A curve is defined for \(x > 0\). The gradient of the curve at the point \(( x , y )\) is given by $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { x ^ { 2 } } - \frac { x } { 4 }$$
  1. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  2. The curve has a stationary point \(M\) whose \(y\)-coordinate is \(\frac { 5 } { 2 }\).
    1. Find the \(x\)-coordinate of \(M\).
    2. Use your answers to parts (a) and (b)(i) to show that \(M\) is a maximum point.
    3. Find the equation of the curve.
Edexcel C2 Q6
  1. \(\quad \mathrm { f } ( x ) = 2 - x + 3 x ^ { \frac { 2 } { 3 } } , \quad x > 0\).
    1. Find \(f ^ { \prime } ( x )\) and \(f ^ { \prime \prime } ( x )\).
    2. Find the coordinates of the turning point of the curve \(y = \mathrm { f } ( x )\).
    3. Determine whether the turning point is a maximum or minimum point.
    4. The points \(P , Q\) and \(R\) have coordinates \(( - 5,2 ) , ( - 3,8 )\) and \(( 9,4 )\) respectively.
    5. Show that \(\angle P Q R = 90 ^ { \circ }\).
    Given that \(P , Q\) and \(R\) all lie on circle \(C\),
  2. find the coordinates of the centre of \(C\),
  3. show that the equation of \(C\) can be written in the form $$x ^ { 2 } + y ^ { 2 } - 4 x - 6 y = k$$ where \(k\) is an integer to be found.
WJEC Unit 3 Specimen Q7
7. The curve \(y = a x ^ { 4 } + b x ^ { 3 } + 18 x ^ { 2 }\) has a point of inflection at \(( 1,11 )\).
  1. Show that \(2 a + b + 6 = 0\).
  2. Find the values of the constants \(a\) and \(b\) and show that the curve has another point of inflection at \(( 3,27 )\).
  3. Sketch the curve, identifying all the stationary points including their nature.
OCR C3 2010 January Q5
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence show that the only stationary point on the curve is the point for which \(x = 0\).
  2. Find an expression for \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and hence find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the stationary point.
SPS SPS SM Pure 2020 February Q6
6 In this question you must show detailed reasoning.
  1. Given that \(y = \mathrm { e } ^ { 2 x } - 8 \mathrm { e } ^ { x } - 16 x ^ { 2 } + 7 x - 3\), determine the range of values of \(x\) for which $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } < 0$$
  2. State the geometrical interpretation of your answer to part (a), in terms of the shape of the graph of \(y = \mathrm { f } ( x )\) (not the gradient of the graph).
SPS SPS SM Pure 2021 September Q9
4 marks
9. The gradient, \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), at the point \(( x , y )\) on a curve is given by $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 54 + 27 x - 6 x ^ { 2 }$$
    1. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
      [0pt] [2 marks]
    2. The curve passes through the point \(P \left( - 1 \frac { 1 } { 2 } , 4 \right)\). Verify that the curve has a minimum point at \(P\).
      [0pt] [2 marks]
    1. Show that at the points on the curve where \(y\) is decreasing $$2 x ^ { 2 } - 9 x - 18 > 0$$
    2. Solve the inequality \(2 x ^ { 2 } - 9 x - 18 > 0\).
SPS SPS SM Statistics 2022 February Q3
3. The curve \(C\) has equation $$y = 5 x ^ { 4 } - 24 x ^ { 3 } + 42 x ^ { 2 } - 32 x + 11 \quad x \in \mathbb { R }$$
  1. Find
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
    2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
    1. Verify that \(C\) has a stationary point at \(x = 1\)
    2. Show that this stationary point is a point of inflection, giving reasons for your answer.
      [0pt] [BLANK PAGE]