SPS SPS SM Pure 2021 September — Question 9 4 marks

Exam BoardSPS
ModuleSPS SM Pure (SPS SM Pure)
Year2021
SessionSeptember
Marks4
TopicDifferentiation Applications
TypeFind second derivative

9. The gradient, \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), at the point \(( x , y )\) on a curve is given by $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 54 + 27 x - 6 x ^ { 2 }$$
    1. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
      [0pt] [2 marks]
    2. The curve passes through the point \(P \left( - 1 \frac { 1 } { 2 } , 4 \right)\). Verify that the curve has a minimum point at \(P\).
      [0pt] [2 marks]
    1. Show that at the points on the curve where \(y\) is decreasing $$2 x ^ { 2 } - 9 x - 18 > 0$$
    2. Solve the inequality \(2 x ^ { 2 } - 9 x - 18 > 0\).