Edexcel C2 — Question 6

Exam BoardEdexcel
ModuleC2 (Core Mathematics 2)
TopicDifferentiation Applications
TypeFind second derivative

  1. \(\quad \mathrm { f } ( x ) = 2 - x + 3 x ^ { \frac { 2 } { 3 } } , \quad x > 0\).
    1. Find \(f ^ { \prime } ( x )\) and \(f ^ { \prime \prime } ( x )\).
    2. Find the coordinates of the turning point of the curve \(y = \mathrm { f } ( x )\).
    3. Determine whether the turning point is a maximum or minimum point.
    4. The points \(P , Q\) and \(R\) have coordinates \(( - 5,2 ) , ( - 3,8 )\) and \(( 9,4 )\) respectively.
    5. Show that \(\angle P Q R = 90 ^ { \circ }\).
    Given that \(P , Q\) and \(R\) all lie on circle \(C\),
  2. find the coordinates of the centre of \(C\),
  3. show that the equation of \(C\) can be written in the form $$x ^ { 2 } + y ^ { 2 } - 4 x - 6 y = k$$ where \(k\) is an integer to be found.