Solve equation with tan(θ ± α)

A question is this type if and only if it requires solving an equation involving tan(θ + α) or tan(θ - α) by applying the compound angle formula for tangent and reducing to a quadratic or simpler equation in tan θ.

24 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE P2 2003 June Q4
7 marks Standard +0.3
4
  1. Show that the equation $$\tan \left( 45 ^ { \circ } + x \right) = 4 \tan \left( 45 ^ { \circ } - x \right)$$ can be written in the form $$3 \tan ^ { 2 } x - 10 \tan x + 3 = 0$$
  2. Hence solve the equation $$\tan \left( 45 ^ { \circ } + x \right) = 4 \tan \left( 45 ^ { \circ } - x \right)$$ for \(0 ^ { \circ } < x < 90 ^ { \circ }\).
CAIE P2 2010 June Q3
6 marks Moderate -0.3
3
  1. Show that the equation \(\tan \left( x + 45 ^ { \circ } \right) = 6 \tan x\) can be written in the form $$6 \tan ^ { 2 } x - 5 \tan x + 1 = 0$$
  2. Hence solve the equation \(\tan \left( x + 45 ^ { \circ } \right) = 6 \tan x\), for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
CAIE P3 2008 June Q4
7 marks Standard +0.3
4
  1. Show that the equation \(\tan \left( 30 ^ { \circ } + \theta \right) = 2 \tan \left( 60 ^ { \circ } - \theta \right)\) can be written in the form $$\tan ^ { 2 } \theta + ( 6 \sqrt { } 3 ) \tan \theta - 5 = 0$$
  2. Hence, or otherwise, solve the equation $$\tan \left( 30 ^ { \circ } + \theta \right) = 2 \tan \left( 60 ^ { \circ } - \theta \right) ,$$ for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
CAIE P3 2010 June Q3
5 marks Standard +0.3
3 Solve the equation $$\tan \left( 45 ^ { \circ } - x \right) = 2 \tan x$$ giving all solutions in the interval \(0 ^ { \circ } < x < 180 ^ { \circ }\).
CAIE P3 2011 June Q4
7 marks Standard +0.3
4
  1. Show that the equation $$\tan \left( 60 ^ { \circ } + \theta \right) + \tan \left( 60 ^ { \circ } - \theta \right) = k$$ can be written in the form $$( 2 \sqrt { } 3 ) \left( 1 + \tan ^ { 2 } \theta \right) = k \left( 1 - 3 \tan ^ { 2 } \theta \right)$$
  2. Hence solve the equation $$\tan \left( 60 ^ { \circ } + \theta \right) + \tan \left( 60 ^ { \circ } - \theta \right) = 3 \sqrt { } 3$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
CAIE P3 2014 June Q3
6 marks Standard +0.3
3
  1. Show that the equation $$\tan \left( x - 60 ^ { \circ } \right) + \cot x = \sqrt { } 3$$ can be written in the form $$2 \tan ^ { 2 } x + ( \sqrt { } 3 ) \tan x - 1 = 0$$
  2. Hence solve the equation $$\tan \left( x - 60 ^ { \circ } \right) + \cot x = \sqrt { } 3$$ for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
CAIE P3 2019 June Q4
6 marks Standard +0.8
4 By first expressing the equation \(\cot \theta - \cot \left( \theta + 45 ^ { \circ } \right) = 3\) as a quadratic equation in \(\tan \theta\), solve the equation for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
CAIE P3 2016 March Q2
6 marks Standard +0.3
2 Express the equation \(\tan \left( \theta + 45 ^ { \circ } \right) - 2 \tan \left( \theta - 45 ^ { \circ } \right) = 4\) as a quadratic equation in \(\tan \theta\). Hence solve this equation for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
CAIE P3 2004 November Q4
7 marks Standard +0.3
4
  1. Show that the equation $$\tan \left( 45 ^ { \circ } + x \right) = 2 \tan \left( 45 ^ { \circ } - x \right)$$ can be written in the form $$\tan ^ { 2 } x - 6 \tan x + 1 = 0$$
  2. Hence solve the equation \(\tan \left( 45 ^ { \circ } + x \right) = 2 \tan \left( 45 ^ { \circ } - x \right)\), for \(0 ^ { \circ } < x < 90 ^ { \circ }\).
CAIE P3 2007 November Q5
7 marks Moderate -0.3
5
  1. Show that the equation $$\tan \left( 45 ^ { \circ } + x \right) - \tan x = 2$$ can be written in the form $$\tan ^ { 2 } x + 2 \tan x - 1 = 0$$
  2. Hence solve the equation $$\tan \left( 45 ^ { \circ } + x \right) - \tan x = 2$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
CAIE P3 2017 November Q3
5 marks Standard +0.8
3 By expressing the equation \(\tan \left( \theta + 60 ^ { \circ } \right) + \tan \left( \theta - 60 ^ { \circ } \right) = \cot \theta\) in terms of \(\tan \theta\) only, solve the equation for \(0 ^ { \circ } < \theta < 90 ^ { \circ }\).
CAIE P3 2020 June Q3
6 marks Standard +0.3
3 Express the equation \(\tan \left( \theta + 60 ^ { \circ } \right) = 2 + \tan \left( 60 ^ { \circ } - \theta \right)\) as a quadratic equation in \(\tan \theta\), and hence solve the equation for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
CAIE P3 2020 June Q5
6 marks Standard +0.8
5 By first expressing the equation $$\tan \theta \tan \left( \theta + 45 ^ { \circ } \right) = 2 \cot 2 \theta$$ as a quadratic equation in \(\tan \theta\), solve the equation for \(0 ^ { \circ } < \theta < 90 ^ { \circ }\).
CAIE P3 2021 March Q3
6 marks Standard +0.3
3 By first expressing the equation \(\tan \left( x + 45 ^ { \circ } \right) = 2 \cot x + 1\) as a quadratic equation in \(\tan x\), solve the equation for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
CAIE P3 2020 November Q4
6 marks Standard +0.3
4
  1. Show that the equation \(\tan \left( \theta + 60 ^ { \circ } \right) = 2 \cot \theta\) can be written in the form $$\tan ^ { 2 } \theta + 3 \sqrt { 3 } \tan \theta - 2 = 0$$
  2. Hence solve the equation \(\tan \left( \theta + 60 ^ { \circ } \right) = 2 \cot \theta\), for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
CAIE P3 2022 November Q4
5 marks Standard +0.8
4 Solve the equation \(\tan \left( x + 45 ^ { \circ } \right) = 2 \cot x\) for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
Edexcel C34 2014 January Q2
6 marks Standard +0.3
2. Solve, for \(0 \leqslant x \leqslant 270 ^ { \circ }\), the equation $$\frac { \tan 2 x + \tan 50 ^ { \circ } } { 1 - \tan 2 x \tan 50 ^ { \circ } } = 2$$ Give your answers in degrees to 2 decimal places.
(6)
\includegraphics[max width=\textwidth, alt={}, center]{5b698944-41ac-4072-b5e1-c580b7752c39-05_104_95_2613_1786}
Edexcel C3 2012 January Q8
13 marks Standard +0.3
8. (a) Starting from the formulae for \(\sin ( A + B )\) and \(\cos ( A + B )\), prove that
(b) Deduce that $$\tan ( A + B ) = \frac { \tan A + \tan B } { 1 - \tan A \tan B }$$ (c) Hence, or otherwise, solve, for \(0 \leqslant \theta \leqslant \pi\), $$\tan \left( \theta + \frac { \pi } { 6 } \right) = \frac { 1 + \sqrt { } 3 \tan \theta } { \sqrt { } 3 - \tan \theta }$$ (c) Hence, or otherwise, solve, for \(0 \leqslant \theta \leqslant \pi\),
(c) $$1 + \sqrt { } 3 \tan \theta = ( \sqrt { } 3 - \tan \theta ) \tan ( \pi - \theta )$$ \section*{}
Edexcel C3 2018 June Q6
11 marks Standard +0.3
  1. (i) Using the identity for \(\tan ( A \pm B )\), solve, for \(- 90 ^ { \circ } < x < 90 ^ { \circ }\),
$$\frac { \tan 2 x + \tan 32 ^ { \circ } } { 1 - \tan 2 x \tan 32 ^ { \circ } } = 5$$ Give your answers, in degrees, to 2 decimal places.
(ii) (a) Using the identity for \(\tan ( A \pm B )\), show that $$\tan \left( 3 \theta - 45 ^ { \circ } \right) \equiv \frac { \tan 3 \theta - 1 } { 1 + \tan 3 \theta } , \quad \theta \neq ( 60 n + 45 ) ^ { \circ } , n \in \mathbb { Z }$$ (b) Hence solve, for \(0 < \theta < 180 ^ { \circ }\), $$( 1 + \tan 3 \theta ) \tan \left( \theta + 28 ^ { \circ } \right) = \tan 3 \theta - 1$$
OCR C3 Q4
7 marks Standard +0.8
4. Find the values of \(x\) in the interval \(- 180 < x < 180\) for which $$\tan ( x + 45 ) ^ { \circ } - \tan x ^ { \circ } = 4 ,$$ giving your answers to 1 decimal place.
OCR MEI C4 2010 June Q6
7 marks Standard +0.3
6 Solve the equation \(\tan \left( \theta + 45 ^ { \circ } \right) = 1 - 2 \tan \theta\), for \(0 ^ { \circ } \leqslant \theta \leqslant 90 ^ { \circ }\). Section B (36 marks)
OCR MEI C4 Q4
7 marks Standard +0.3
4 Solve the equation \(\tan \left( \theta + 45 ^ { \circ } \right) = 1 - 2 \tan \theta\), for \(0 ^ { \circ } \leqslant \theta \leqslant 90 ^ { \circ }\).
Edexcel AEA 2013 June Q2
8 marks Standard +0.8
2.(a)Use the formula for \(\sin ( A - B )\) to show that \(\sin \left( 90 ^ { \circ } - x \right) = \cos x\)
(b)Solve for \(0 < \theta < 360 ^ { \circ }\) $$2 \sin \left( \theta + 17 ^ { \circ } \right) = \frac { \cos \left( \theta + 8 ^ { \circ } \right) } { \cos \left( \theta + 17 ^ { \circ } \right) }$$
Edexcel C3 Q5
9 marks Standard +0.8
5. Find the values of \(x\) in the interval \(- 180 < x < 180\) for which $$\tan ( x + 45 ) ^ { \circ } - \tan x ^ { \circ } = 4$$ giving your answers to 1 decimal place.