A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Addition & Double Angle Formulae
Q4
CAIE P3 2011 June — Question 4
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2011
Session
June
Topic
Addition & Double Angle Formulae
4
Show that the equation $$\tan \left( 60 ^ { \circ } + \theta \right) + \tan \left( 60 ^ { \circ } - \theta \right) = k$$ can be written in the form $$( 2 \sqrt { } 3 ) \left( 1 + \tan ^ { 2 } \theta \right) = k \left( 1 - 3 \tan ^ { 2 } \theta \right)$$
Hence solve the equation $$\tan \left( 60 ^ { \circ } + \theta \right) + \tan \left( 60 ^ { \circ } - \theta \right) = 3 \sqrt { } 3$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10