CAIE P3 2011 June — Question 4

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2011
SessionJune
TopicAddition & Double Angle Formulae

4
  1. Show that the equation $$\tan \left( 60 ^ { \circ } + \theta \right) + \tan \left( 60 ^ { \circ } - \theta \right) = k$$ can be written in the form $$( 2 \sqrt { } 3 ) \left( 1 + \tan ^ { 2 } \theta \right) = k \left( 1 - 3 \tan ^ { 2 } \theta \right)$$
  2. Hence solve the equation $$\tan \left( 60 ^ { \circ } + \theta \right) + \tan \left( 60 ^ { \circ } - \theta \right) = 3 \sqrt { } 3$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).