A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Addition & Double Angle Formulae
Q4
CAIE P3 2008 June — Question 4
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2008
Session
June
Topic
Addition & Double Angle Formulae
4
Show that the equation \(\tan \left( 30 ^ { \circ } + \theta \right) = 2 \tan \left( 60 ^ { \circ } - \theta \right)\) can be written in the form $$\tan ^ { 2 } \theta + ( 6 \sqrt { } 3 ) \tan \theta - 5 = 0$$
Hence, or otherwise, solve the equation $$\tan \left( 30 ^ { \circ } + \theta \right) = 2 \tan \left( 60 ^ { \circ } - \theta \right) ,$$ for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10