Solve using given identity

Use a result from a previous part (often an identity or simplified form) to solve an equation.

17 questions · Standard +0.1

Sort by: Default | Easiest first | Hardest first
CAIE P1 2023 June Q7
11 marks Standard +0.3
7
    1. By first expanding \(( \cos \theta + \sin \theta ) ^ { 2 }\), find the three solutions of the equation $$( \cos \theta + \sin \theta ) ^ { 2 } = 1$$ for \(0 \leqslant \theta \leqslant \pi\).
    2. Hence verify that the only solutions of the equation \(\cos \theta + \sin \theta = 1\) for \(0 \leqslant \theta \leqslant \pi\) are 0 and \(\frac { 1 } { 2 } \pi\).
  1. Prove the identity \(\frac { \sin \theta } { \cos \theta + \sin \theta } + \frac { 1 - \cos \theta } { \cos \theta - \sin \theta } \equiv \frac { \cos \theta + \sin \theta - 1 } { 1 - 2 \sin ^ { 2 } \theta }\).
  2. Using the results of (a) (ii) and (b), solve the equation $$\frac { \sin \theta } { \cos \theta + \sin \theta } + \frac { 1 - \cos \theta } { \cos \theta - \sin \theta } = 2 ( \cos \theta + \sin \theta - 1 )$$ for \(0 \leqslant \theta \leqslant \pi\).
OCR MEI C2 Q2
5 marks Moderate -0.3
2
  1. Show that the equation \(\frac { \tan \theta } { \cos \theta } = 1\) may be rewritten as \(\sin \theta = 1 - \sin ^ { 2 } \theta\).
  2. Hence solve the equation \(\frac { \tan \theta } { \cos \theta } = 1\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR MEI C4 Q1
7 marks Moderate -0.3
1 Express \(6 \cos 2 \theta + \sin \theta\) in terms of \(\sin \theta\).
Hence solve the equation \(6 \cos 2 \theta + \sin \theta = 0\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR C2 2012 January Q9
9 marks Standard +0.3
9
  1. Sketch the graph of \(y = \tan \left( \frac { 1 } { 2 } x \right)\) for \(- 2 \pi \leqslant x \leqslant 2 \pi\) on the axes provided.
    On the same axes, sketch the graph of \(y = 3 \cos \left( \frac { 1 } { 2 } x \right)\) for \(- 2 \pi \leqslant x \leqslant 2 \pi\), indicating the point of intersection with the \(y\)-axis.
  2. Show that the equation \(\tan \left( \frac { 1 } { 2 } x \right) = 3 \cos \left( \frac { 1 } { 2 } x \right)\) can be expressed in the form $$3 \sin ^ { 2 } \left( \frac { 1 } { 2 } x \right) + \sin \left( \frac { 1 } { 2 } x \right) - 3 = 0$$ Hence solve the equation \(\tan \left( \frac { 1 } { 2 } x \right) = 3 \cos \left( \frac { 1 } { 2 } x \right)\) for \(- 2 \pi \leqslant x \leqslant 2 \pi\).
OCR C2 2013 January Q5
7 marks Standard +0.3
5
  1. Show that the equation \(2 \sin x = \frac { 4 \cos x - 1 } { \tan x }\) can be expressed in the form $$6 \cos ^ { 2 } x - \cos x - 2 = 0 .$$
  2. Hence solve the equation \(2 \sin x = \frac { 4 \cos x - 1 } { \tan x }\), giving all values of \(x\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).
OCR MEI C2 2013 January Q9
5 marks Moderate -0.3
9
  1. Show that the equation \(\frac { \tan \theta } { \cos \theta } = 1\) may be rewritten as \(\sin \theta = 1 - \sin ^ { 2 } \theta\).
  2. Hence solve the equation \(\frac { \tan \theta } { \cos \theta } = 1\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Edexcel AS Paper 1 2018 June Q12
8 marks Standard +0.3
  1. (a) Show that the equation
$$4 \cos \theta - 1 = 2 \sin \theta \tan \theta$$ can be written in the form $$6 \cos ^ { 2 } \theta - \cos \theta - 2 = 0$$ (b) Hence solve, for \(0 \leqslant x < 90 ^ { \circ }\) $$4 \cos 3 x - 1 = 2 \sin 3 x \tan 3 x$$ giving your answers, where appropriate, to one decimal place. (Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel AS Paper 1 2019 June Q12
7 marks Standard +0.8
  1. (a) Show that
$$\frac { 10 \sin ^ { 2 } \theta - 7 \cos \theta + 2 } { 3 + 2 \cos \theta } \equiv 4 - 5 \cos \theta$$ (b) Hence, or otherwise, solve, for \(0 \leqslant x < 360 ^ { \circ }\), the equation $$\frac { 10 \sin ^ { 2 } x - 7 \cos x + 2 } { 3 + 2 \cos x } = 4 + 3 \sin x$$
OCR PURE 2018 May Q7
8 marks Standard +0.3
7
  1. Show that the equation $$2 \sin x \tan x = \cos x + 5$$ can be expressed in the form $$3 \cos ^ { 2 } x + 5 \cos x - 2 = 0$$
  2. Hence solve the equation $$2 \sin 2 \theta \tan 2 \theta = \cos 2 \theta + 5$$ giving all values of \(\theta\) between \(0 ^ { \circ }\) and \(180 ^ { \circ }\), correct to 1 decimal place.
AQA C2 2008 January Q9
8 marks Standard +0.3
9
  1. Given that $$\frac { 3 + \sin ^ { 2 } \theta } { \cos \theta - 2 } = 3 \cos \theta$$ show that $$\cos \theta = - \frac { 1 } { 2 }$$
  2. Hence solve the equation $$\frac { 3 + \sin ^ { 2 } 3 x } { \cos 3 x - 2 } = 3 \cos 3 x$$ giving all solutions in degrees in the interval \(0 ^ { \circ } < x < 180 ^ { \circ }\).
AQA C2 2010 January Q8
12 marks Standard +0.3
8
  1. Solve the equation \(\tan \left( x + 52 ^ { \circ } \right) = \tan 22 ^ { \circ }\), giving the values of \(x\) in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
    1. Show that the equation $$3 \tan \theta = \frac { 8 } { \sin \theta }$$ can be written as $$3 \cos ^ { 2 } \theta + 8 \cos \theta - 3 = 0$$
    2. Find the value of \(\cos \theta\) that satisfies the equation $$3 \cos ^ { 2 } \theta + 8 \cos \theta - 3 = 0$$
    3. Hence solve the equation $$3 \tan 2 x = \frac { 8 } { \sin 2 x }$$ giving all values of \(x\) to the nearest degree in the interval \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
AQA C2 2013 January Q9
12 marks Standard +0.3
9
  1. Write down the two solutions of the equation \(\tan \left( x + 30 ^ { \circ } \right) = \tan 79 ^ { \circ }\) in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
    (2 marks)
  2. Describe a single geometrical transformation that maps the graph of \(y = \tan x\) onto the graph of \(y = \tan \left( x + 30 ^ { \circ } \right)\).
    1. Given that \(5 + \sin ^ { 2 } \theta = ( 5 + 3 \cos \theta ) \cos \theta\), show that \(\cos \theta = \frac { 3 } { 4 }\).
    2. Hence solve the equation \(5 + \sin ^ { 2 } 2 x = ( 5 + 3 \cos 2 x ) \cos 2 x\) in the interval \(0 < x < 2 \pi\), giving your values of \(x\) in radians to three significant figures.
AQA C2 2005 June Q8
10 marks Moderate -0.3
8
    1. Show that the equation $$4 \tan \theta \sin \theta = 15$$ can be written as $$4 \sin ^ { 2 } \theta = 15 \cos \theta$$ (1 mark)
    2. Use an appropriate identity to show that the equation $$4 \sin ^ { 2 } \theta = 15 \cos \theta$$ can be written as $$4 \cos ^ { 2 } \theta + 15 \cos \theta - 4 = 0$$
    1. Solve the equation \(4 c ^ { 2 } + 15 c - 4 = 0\).
    2. Hence explain why the only value of \(\cos \theta\) which satisfies the equation $$4 \cos ^ { 2 } \theta + 15 \cos \theta - 4 = 0$$ is \(\cos \theta = \frac { 1 } { 4 }\).
    3. Hence solve the equation \(4 \tan \theta \sin \theta = 15\) giving all solutions to the nearest \(0.1 ^ { \circ }\) in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
  1. Write down all the values of \(x\) in the interval \(0 ^ { \circ } \leqslant x \leqslant 90 ^ { \circ }\) for which $$4 \tan 4 x \sin 4 x = 15$$ giving your answers to the nearest degree.
AQA C2 2010 June Q7
8 marks Moderate -0.3
7
  1. Sketch the graph of \(y = \cos x\) in the interval \(0 \leqslant x \leqslant 2 \pi\). State the values of the intercepts with the coordinate axes.
    1. Given that $$\sin ^ { 2 } \theta = \cos \theta ( 2 - \cos \theta )$$ prove that \(\cos \theta = \frac { 1 } { 2 }\).
    2. Hence solve the equation $$\sin ^ { 2 } 2 x = \cos 2 x ( 2 - \cos 2 x )$$ in the interval \(0 \leqslant x \leqslant \pi\), giving your answers in radians to three significant figures.
AQA C2 2013 June Q9
14 marks Standard +0.3
9
    1. On the axes given below, sketch the graph of \(y = \tan x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
    2. Solve the equation \(\tan x = - 1\), giving all values of \(x\) in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
    1. Given that \(6 \tan \theta \sin \theta = 5\), show that \(6 \cos ^ { 2 } \theta + 5 \cos \theta - 6 = 0\).
    2. Hence solve the equation \(6 \tan 3 x \sin 3 x = 5\), giving all values of \(x\) to the nearest degree in the interval \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\). \includegraphics[max width=\textwidth, alt={}, center]{f4f090a1-7e36-4993-a49e-b6e7e8589057-5_720_1367_806_390}
AQA C2 2014 June Q7
7 marks Moderate -0.3
7
  1. Given that \(\frac { \cos ^ { 2 } x + 4 \sin ^ { 2 } x } { 1 - \sin ^ { 2 } x } = 7\), show that \(\tan ^ { 2 } x = \frac { 3 } { 2 }\).
  2. Hence solve the equation \(\frac { \cos ^ { 2 } 2 \theta + 4 \sin ^ { 2 } 2 \theta } { 1 - \sin ^ { 2 } 2 \theta } = 7\) in the interval \(0 ^ { \circ } < \theta < 180 ^ { \circ }\), giving your values of \(\theta\) to the nearest degree.
    [0pt] [4 marks]
Edexcel C2 Q6
6 marks Moderate -0.3
6. Given that \(2 \sin 2 \theta = \cos 2 \theta\),
  1. show that \(\tan 2 \theta = 0.5\).
  2. Hence find the values of \(\theta\), to one decimal place, in the interval \(0 \leq \theta < 360\) for which \(2 \sin 2 \theta ^ { \circ } = \cos 2 \theta ^ { \circ }\).
    (5)
    [0pt] [P1 June 2001 Question 2]