On the axes given below, sketch the graph of \(y = \tan x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
Solve the equation \(\tan x = - 1\), giving all values of \(x\) in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
Given that \(6 \tan \theta \sin \theta = 5\), show that \(6 \cos ^ { 2 } \theta + 5 \cos \theta - 6 = 0\).
Hence solve the equation \(6 \tan 3 x \sin 3 x = 5\), giving all values of \(x\) to the nearest degree in the interval \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
\includegraphics[max width=\textwidth, alt={}, center]{f4f090a1-7e36-4993-a49e-b6e7e8589057-5_720_1367_806_390}