Sketch the graph of \(y = \tan \left( \frac { 1 } { 2 } x \right)\) for \(- 2 \pi \leqslant x \leqslant 2 \pi\) on the axes provided.
On the same axes, sketch the graph of \(y = 3 \cos \left( \frac { 1 } { 2 } x \right)\) for \(- 2 \pi \leqslant x \leqslant 2 \pi\), indicating the point of intersection with the \(y\)-axis.
Show that the equation \(\tan \left( \frac { 1 } { 2 } x \right) = 3 \cos \left( \frac { 1 } { 2 } x \right)\) can be expressed in the form
$$3 \sin ^ { 2 } \left( \frac { 1 } { 2 } x \right) + \sin \left( \frac { 1 } { 2 } x \right) - 3 = 0$$
Hence solve the equation \(\tan \left( \frac { 1 } { 2 } x \right) = 3 \cos \left( \frac { 1 } { 2 } x \right)\) for \(- 2 \pi \leqslant x \leqslant 2 \pi\).