AQA C2 2010 January — Question 8

Exam BoardAQA
ModuleC2 (Core Mathematics 2)
Year2010
SessionJanuary
TopicTrig Equations

8
  1. Solve the equation \(\tan \left( x + 52 ^ { \circ } \right) = \tan 22 ^ { \circ }\), giving the values of \(x\) in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
    1. Show that the equation $$3 \tan \theta = \frac { 8 } { \sin \theta }$$ can be written as $$3 \cos ^ { 2 } \theta + 8 \cos \theta - 3 = 0$$
    2. Find the value of \(\cos \theta\) that satisfies the equation $$3 \cos ^ { 2 } \theta + 8 \cos \theta - 3 = 0$$
    3. Hence solve the equation $$3 \tan 2 x = \frac { 8 } { \sin 2 x }$$ giving all values of \(x\) to the nearest degree in the interval \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).