CAIE P1 2023 June — Question 7

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2023
SessionJune
TopicTrig Equations

7
    1. By first expanding \(( \cos \theta + \sin \theta ) ^ { 2 }\), find the three solutions of the equation $$( \cos \theta + \sin \theta ) ^ { 2 } = 1$$ for \(0 \leqslant \theta \leqslant \pi\).
    2. Hence verify that the only solutions of the equation \(\cos \theta + \sin \theta = 1\) for \(0 \leqslant \theta \leqslant \pi\) are 0 and \(\frac { 1 } { 2 } \pi\).
  1. Prove the identity \(\frac { \sin \theta } { \cos \theta + \sin \theta } + \frac { 1 - \cos \theta } { \cos \theta - \sin \theta } \equiv \frac { \cos \theta + \sin \theta - 1 } { 1 - 2 \sin ^ { 2 } \theta }\).
  2. Using the results of (a) (ii) and (b), solve the equation $$\frac { \sin \theta } { \cos \theta + \sin \theta } + \frac { 1 - \cos \theta } { \cos \theta - \sin \theta } = 2 ( \cos \theta + \sin \theta - 1 )$$ for \(0 \leqslant \theta \leqslant \pi\).