| Exam Board | AQA |
| Module | C2 (Core Mathematics 2) |
| Year | 2014 |
| Session | June |
| Marks | 4 |
| Topic | Trig Equations |
7
- Given that \(\frac { \cos ^ { 2 } x + 4 \sin ^ { 2 } x } { 1 - \sin ^ { 2 } x } = 7\), show that \(\tan ^ { 2 } x = \frac { 3 } { 2 }\).
- Hence solve the equation \(\frac { \cos ^ { 2 } 2 \theta + 4 \sin ^ { 2 } 2 \theta } { 1 - \sin ^ { 2 } 2 \theta } = 7\) in the interval \(0 ^ { \circ } < \theta < 180 ^ { \circ }\), giving your values of \(\theta\) to the nearest degree.
[0pt]
[4 marks]