AQA C2 2014 June — Question 7 4 marks

Exam BoardAQA
ModuleC2 (Core Mathematics 2)
Year2014
SessionJune
Marks4
TopicTrig Equations

7
  1. Given that \(\frac { \cos ^ { 2 } x + 4 \sin ^ { 2 } x } { 1 - \sin ^ { 2 } x } = 7\), show that \(\tan ^ { 2 } x = \frac { 3 } { 2 }\).
  2. Hence solve the equation \(\frac { \cos ^ { 2 } 2 \theta + 4 \sin ^ { 2 } 2 \theta } { 1 - \sin ^ { 2 } 2 \theta } = 7\) in the interval \(0 ^ { \circ } < \theta < 180 ^ { \circ }\), giving your values of \(\theta\) to the nearest degree.
    [0pt] [4 marks]