| Exam Board | AQA |
| Module | C2 (Core Mathematics 2) |
| Year | 2008 |
| Session | January |
| Topic | Trig Equations |
9
- Given that
$$\frac { 3 + \sin ^ { 2 } \theta } { \cos \theta - 2 } = 3 \cos \theta$$
show that
$$\cos \theta = - \frac { 1 } { 2 }$$
- Hence solve the equation
$$\frac { 3 + \sin ^ { 2 } 3 x } { \cos 3 x - 2 } = 3 \cos 3 x$$
giving all solutions in degrees in the interval \(0 ^ { \circ } < x < 180 ^ { \circ }\).