Prove inverse hyperbolic logarithmic form

A question is this type if and only if it asks to prove that an inverse hyperbolic function equals a specific logarithmic expression (e.g., arsinh x = ln(x + √(x²+1)) or artanh x = ½ln((1+x)/(1-x))).

19 questions · Standard +0.8

Sort by: Default | Easiest first | Hardest first
Edexcel F3 2021 October Q2
6 marks Standard +0.8
2. Given that $$\cosh y = x \quad \text { and } \quad y < 0$$ use the definition of coshy in terms of exponential functions to prove that $$y = \ln \left( x - \sqrt { x ^ { 2 } - 1 } \right)$$
Edexcel FP3 2018 June Q1
5 marks Standard +0.3
  1. (a) Starting from the definitions of \(\sinh x\) and \(\cosh x\) in terms of exponentials, show that, for \(x \in \mathbb { R }\)
$$\tanh x = \frac { \mathrm { e } ^ { 2 x } - 1 } { \mathrm { e } ^ { 2 x } + 1 }$$ (b) Hence, given that \(- 1 < \theta < 1\), prove that $$\operatorname { artanh } \theta = \frac { 1 } { 2 } \ln \left( \frac { 1 + \theta } { 1 - \theta } \right)$$ uestion 1 continued
\(\_\_\_\_\) 7
OCR FP2 2007 January Q8
9 marks Standard +0.8
8
  1. Define tanh \(y\) in terms of \(\mathrm { e } ^ { y }\) and \(\mathrm { e } ^ { - y }\).
  2. Given that \(y = \tanh ^ { - 1 } x\), where \(- 1 < x < 1\), prove that \(y = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right)\).
  3. Find the exact solution of the equation \(3 \cosh x = 4 \sinh x\), giving the answer in terms of a logarithm.
  4. Solve the equation $$\tanh ^ { - 1 } x + \ln ( 1 - x ) = \ln \left( \frac { 4 } { 5 } \right)$$
OCR MEI FP2 2009 January Q4
18 marks Standard +0.8
4
    1. Prove, from definitions involving exponentials, that $$\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1$$
    2. Given that \(\sinh x = \tan y\), where \(- \frac { 1 } { 2 } \pi < y < \frac { 1 } { 2 } \pi\), show that
      (A) \(\tanh x = \sin y\),
      (B) \(x = \ln ( \tan y + \sec y )\).
    1. Given that \(y = \operatorname { artanh } x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\). Hence show that \(\int _ { - \frac { 1 } { 2 } } ^ { \frac { 1 } { 2 } } \frac { 1 } { 1 - x ^ { 2 } } \mathrm {~d} x = 2 \operatorname { artanh } \frac { 1 } { 2 }\).
    2. Express \(\frac { 1 } { 1 - x ^ { 2 } }\) in partial fractions and hence find an expression for \(\int \frac { 1 } { 1 - x ^ { 2 } } \mathrm {~d} x\) in terms of logarithms.
    3. Use the results in parts (i) and (ii) to show that \(\operatorname { artanh } \frac { 1 } { 2 } = \frac { 1 } { 2 } \ln 3\).
OCR MEI FP2 2012 January Q4
18 marks Standard +0.8
4
  1. Define tanh \(t\) in terms of exponential functions. Sketch the graph of \(\tanh t\).
  2. Show that \(\operatorname { artanh } x = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right)\). State the set of values of \(x\) for which this equation is valid.
  3. Differentiate the equation \(\tanh y = x\) with respect to \(x\) and hence show that the derivative of \(\operatorname { artanh } x\) is \(\frac { 1 } { 1 - x ^ { 2 } }\). Show that this result may also be obtained by differentiating the equation in part (ii).
  4. By considering \(\operatorname { artanh } x\) as \(1 \times \operatorname { artanh } x\) and using integration by parts, show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } } \operatorname { artanh } x \mathrm {~d} x = \frac { 1 } { 4 } \ln \frac { 27 } { 16 }$$
OCR MEI FP2 2014 June Q4
18 marks Challenging +1.2
4
  1. Given that \(\sinh y = x\), show that $$y = \ln \left( x + \sqrt { 1 + x ^ { 2 } } \right)$$ Differentiate (*) to show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 1 + x ^ { 2 } } }$$
  2. Find \(\int \frac { 1 } { \sqrt { 25 + 4 x ^ { 2 } } } \mathrm {~d} x\), expressing your answer in logarithmic form.
  3. Use integration by substitution with \(2 x = 5 \sinh u\) to show that $$\int \sqrt { 25 + 4 x ^ { 2 } } \mathrm {~d} x = \frac { 25 } { 4 } \left( \ln \left( \frac { 2 x } { 5 } + \sqrt { 1 + \frac { 4 x ^ { 2 } } { 25 } } \right) + \frac { 2 x } { 5 } \sqrt { 1 + \frac { 4 x ^ { 2 } } { 25 } } \right) + c$$ where \(c\) is an arbitrary constant. \section*{OCR}
OCR MEI FP2 2015 June Q4
18 marks Standard +0.8
4
  1. Starting with the relationship \(\cosh ^ { 2 } t - \sinh ^ { 2 } t = 1\), deduce a relationship between \(\tanh ^ { 2 } t\) and \(\operatorname { sech } ^ { 2 } t\). You are given that \(y = \operatorname { artanh } x\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 1 - x ^ { 2 } }\).
  3. Show, by integrating the result in part (ii), that \(y = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right)\).
  4. Show that \(\int _ { 0 } ^ { \frac { \sqrt { 3 } } { 6 } } \frac { 1 } { 1 - 3 x ^ { 2 } } \mathrm {~d} x = \frac { 1 } { \sqrt { 3 } } \operatorname { artanh } \frac { 1 } { 2 }\). Express this answer in logarithmic form.
  5. Use integration by parts to find \(\int \operatorname { artanh } x \mathrm {~d} x\), giving your answer in terms of logarithms. \section*{END OF QUESTION PAPER}
OCR MEI FP2 2013 June Q4
18 marks Challenging +1.2
4
  1. Prove, using exponential functions, that \(\cosh ^ { 2 } u - \sinh ^ { 2 } u = 1\).
  2. Given that \(y = \operatorname { arsinh } x\), show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 1 + x ^ { 2 } } }$$ and that $$y = \ln \left( x + \sqrt { 1 + x ^ { 2 } } \right)$$
  3. Show that $$\int _ { 0 } ^ { 2 } \frac { 1 } { \sqrt { 4 + 9 x ^ { 2 } } } \mathrm {~d} x = \frac { 1 } { 3 } \ln ( 3 + \sqrt { 10 } )$$
  4. Find, in exact logarithmic form, $$\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 1 + x ^ { 2 } } } \operatorname { arsinh } x \mathrm {~d} x$$
OCR FP2 2012 January Q6
8 marks Challenging +1.2
6
  1. Prove that the derivative of \(\cos ^ { - 1 } x\) is \(- \frac { 1 } { \sqrt { 1 - x ^ { 2 } } }\). A curve has equation \(y = \cos ^ { - 1 } \left( 1 - x ^ { 2 } \right)\), for \(0 < x < \sqrt { 2 }\).
  2. Find and simplify \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), and hence show that $$\left( 2 - x ^ { 2 } \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = x \frac { \mathrm {~d} y } { \mathrm {~d} x }$$
  3. Given that \(y = \sinh ^ { - 1 } x\), prove that \(y = \ln \left( x + \sqrt { x ^ { 2 } + 1 } \right)\).
  4. It is given that \(x\) satisfies the equation \(\sinh ^ { - 1 } x - \cosh ^ { - 1 } x = \ln 2\). Use the logarithmic forms for \(\sinh ^ { - 1 } x\) and \(\cosh ^ { - 1 } x\) to show that $$\sqrt { x ^ { 2 } + 1 } - 2 \sqrt { x ^ { 2 } - 1 } = x$$ Hence, by squaring this equation, find the exact value of \(x\).
OCR FP2 2014 June Q6
9 marks Standard +0.3
6
  1. Given that \(y = \cosh ^ { - 1 } x\), show that \(y = \ln \left( x + \sqrt { x ^ { 2 } - 1 } \right)\).
  2. Show that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \cosh ^ { - 1 } x \right) = \frac { 1 } { \sqrt { x ^ { 2 } - 1 } }\).
  3. Solve the equation \(\cosh x = 3\), giving your answers in logarithmic form.
OCR FP2 2015 June Q1
3 marks Standard +0.8
1 By first expressing \(\tanh y\) in terms of exponentials, prove that \(\tanh ^ { - 1 } x = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right)\).
AQA Further AS Paper 1 2018 June Q6
3 marks Standard +0.8
6
  1. Matthew is finding a formula for the inverse function \(\operatorname { arsinh } x\). He writes his steps as follows: $$\begin{gathered} \text { Let } y = \sinh x \\ y = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } \right) \\ 2 y = \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } \\ 0 = \mathrm { e } ^ { x } - 2 y - \mathrm { e } ^ { - x } \\ 0 = \left( \mathrm { e } ^ { x } \right) ^ { 2 } - 2 y \mathrm { e } ^ { x } - 1 \\ 0 = \left( \mathrm { e } ^ { x } - y \right) ^ { 2 } - y ^ { 2 } - 1 \\ y ^ { 2 } + 1 = \left( \mathrm { e } ^ { x } - y \right) ^ { 2 } \\ \pm \sqrt { y ^ { 2 } + 1 } = \mathrm { e } ^ { x } - y \\ y \pm \sqrt { y ^ { 2 } + 1 } = \mathrm { e } ^ { x } \end{gathered}$$ To find the inverse function, swap \(x\) and \(y : x \pm \sqrt { x ^ { 2 } + 1 } = \mathrm { e } ^ { y }\) $$\begin{gathered} \ln \left( x \pm \sqrt { x ^ { 2 } + 1 } \right) = y \\ \operatorname { arsinh } x = \ln \left( x \pm \sqrt { x ^ { 2 } + 1 } \right) \end{gathered}$$ Identify, and explain, the error in Matthew's proof. 6
  2. Solve \(\ln \left( x + \sqrt { x ^ { 2 } + 1 } \right) = 3\)
AQA FP2 2013 January Q5
11 marks Standard +0.8
5
  1. Using the definition \(\tanh y = \frac { \mathrm { e } ^ { y } - \mathrm { e } ^ { - y } } { \mathrm { e } ^ { y } + \mathrm { e } ^ { - y } }\), show that, for \(| x | < 1\), $$\tanh ^ { - 1 } x = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right)$$
  2. Hence, or otherwise, show that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \tanh ^ { - 1 } x \right) = \frac { 1 } { 1 - x ^ { 2 } }\).
  3. Use integration by parts to show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } } 4 \tanh ^ { - 1 } x \mathrm {~d} x = \ln \left( \frac { 3 ^ { m } } { 2 ^ { n } } \right)$$ where \(m\) and \(n\) are positive integers.
WJEC Further Unit 4 2022 June Q8
6 marks Standard +0.3
8. By writing \(x = \sinh y\), show that \(\sinh ^ { - 1 } x = \ln \left( x + \sqrt { x ^ { 2 } + 1 } \right)\).
Edexcel CP2 2019 June Q1
10 marks Challenging +1.2
  1. (a) Prove that
$$\tanh ^ { - 1 } ( x ) = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right) \quad - k < x < k$$ stating the value of the constant \(k\).
(b) Hence, or otherwise, solve the equation $$2 x = \tanh ( \ln \sqrt { 2 - 3 x } )$$
OCR Further Pure Core 1 2018 December Q8
9 marks Standard +0.8
8
  1. Given that \(u = \tanh x\), use the definition of \(\tanh x\) in terms of exponentials to show that $$x = \frac { 1 } { 2 } \ln \left( \frac { 1 + u } { 1 - u } \right)$$
  2. Solve the equation \(4 \tanh ^ { 2 } x + \tanh x - 3 = 0\), giving the solution in the form \(a \ln b\) where \(a\) and \(b\) are rational numbers to be determined.
  3. Explain why the equation in part (b) has only one root.
AQA Further AS Paper 1 2020 June Q8
8 marks Standard +0.3
8
  1. Prove that
    \(\tanh ^ { - 1 } x = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right)\)
    8
  2. Prove that the graphs of $$y = \sinh x \quad \text { and } \quad y = \cosh x$$ do not intersect.
AQA Further Paper 1 2020 June Q12
8 marks Standard +0.8
12
  1. Use the definition of the cosh function to prove that $$\cosh ^ { - 1 } \left( \frac { x } { a } \right) = \ln \left( \frac { x + \sqrt { x ^ { 2 } - a ^ { 2 } } } { a } \right) \quad \text { for } a > 0$$ [6 marks]
    12
  2. The formulae booklet gives the integral of \(\frac { 1 } { \sqrt { x ^ { 2 } - a ^ { 2 } } }\) as $$\cosh ^ { - 1 } \left( \frac { x } { a } \right) \text { or } \ln \left( x + \sqrt { x ^ { 2 } - a ^ { 2 } } \right) + c$$ Ronald says that this contradicts the result given in part (a).
    Explain why Ronald is wrong.
OCR Further Pure Core 1 2021 June Q4
9 marks Standard +0.8
4
  1. Given that \(u = \tanh x\), use the definition of \(\tanh x\) in terms of exponentials to show that $$x = \frac { 1 } { 2 } \ln \left( \frac { 1 + u } { 1 - u } \right)$$
  2. Solve the equation \(4 \tanh ^ { 2 } x + \tanh x - 3 = 0\), giving the solution in the form \(a \ln b\) where \(a\) and \(b\) are rational numbers to be determined.
  3. Explain why the equation in part (b) has only one root.