AQA Further Paper 1 2020 June — Question 12 6 marks

Exam BoardAQA
ModuleFurther Paper 1 (Further Paper 1)
Year2020
SessionJune
Marks6
TopicHyperbolic functions

12
  1. Use the definition of the cosh function to prove that $$\cosh ^ { - 1 } \left( \frac { x } { a } \right) = \ln \left( \frac { x + \sqrt { x ^ { 2 } - a ^ { 2 } } } { a } \right) \quad \text { for } a > 0$$ [6 marks]
    12
  2. The formulae booklet gives the integral of \(\frac { 1 } { \sqrt { x ^ { 2 } - a ^ { 2 } } }\) as $$\cosh ^ { - 1 } \left( \frac { x } { a } \right) \text { or } \ln \left( x + \sqrt { x ^ { 2 } - a ^ { 2 } } \right) + c$$ Ronald says that this contradicts the result given in part (a).
    Explain why Ronald is wrong.